388
A. Mallinger et al.
LETTER
Angew. Chem. Int. Ed. 2003, 42, 1289. (b) Heurtaux, B.;
Lion, C.; Le Gall, T.; Mioskowski, C. J. Org. Chem. 2005,
70, 1474. (c) Desage-El Murr, M.; Nowaczyk, S.; Le Gall,
T.; Mioskowski, C. Eur. J. Org. Chem. 2006, 1489.
(d) Willis, C.; Bodio, E.; Bourdreux, Y.; Billaud, C.;
Le Gall, T.; Mioskowski, C. Tetrahedron Lett. 2007, 48,
6421.
ly in the context of a total synthesis. This is a tandem pro-
cess involving a transesterification and a subsequent
Dieckmann condensation. Tetronic acids that are either
unsubstituted, monosubstituted, or disubstituted at C5 can
be obtained from the corresponding hydroxyacetates. Fur-
ther developments based on this tandem process are cur-
rently under way.
(8) Lloyd-Jones, G. C. Angew. Chem. Int. Ed. 2002, 41, 953; and
references therein.
(9) Campbell, A. C.; Maidment, M. S.; Pick, J. H.; Stevenson,
D. F. M. J. Chem. Soc., Perkin Trans. 1 1985, 1567.
(10) Typical Experimental Procedures for Compound 3a
In DMF: To a solution of methyl 4-methoxyphenylacetate
(0.318 mL, 2.0 mmol) and methyl glycolate (0.170 g, 2.2
mmol) in DMF (10 mL) was added a 1 M solution of
KOt-Bu in THF (4.4 mL, 4.4 mmol). The solution was
stirred under argon at r.t. for 2 h. The reaction mixture was
then poured into cooled 1 N HCl (15 mL). The aqueous
phase was extracted with EtOAc (3 × 10 mL), the combined
organic layers were washed several times with brine, dried
over Na2SO4. After filtration and concentration in vacuo, the
residue was purified by column chromatography [silica gel,
200:1, then CH2Cl2–MeOH (95:5) containing 0.2% AcOH],
to give compound 3a as a white solid (0.370 g, 90%).
In THF: To a solution of methyl 4-methoxyphenylacetate
(0.318 mL, 2.0 mmol) and methyl glycolate (0.170 g, 2.2
mmol) in anhyd, degassed THF (10 mL) was added a 1 M
solution of KOt-Bu in THF (4.4 mL, 4.4 mmol). The
suspension obtained was refluxed under argon for 16 h.
After cooling to r.t., the reaction mixture was poured into
1 N HCl (15 mL). Treatment and purification as above
afforded compound 3a as a white solid (0.350 g, 85%).
Compound 3a: mp 228 °C (lit. 9: 228–229 °C). IR (neat):
2955, 1695, 1641, 1610, 1514, 1426, 1398, 1351, 1297,
1256, 1169, 1053, 1030, 1022, 960, 836, 736 cm–1. 1H NMR
(400 MHz, acetone-d6): d = 3.81 (s, 3 H, OCH3), 4.76 (s, 2
H, CH2), 6.95 (d, J = 9.0 Hz, 2 H, CH), 7.94 (d, J = 9.0 Hz,
2 H, CH), 10.94 (br s, 1 H, OH). 13C NMR (100 MHz,
acetone-d6): d = 55.5 (OCH3), 66.6 (C5), 100.3 (C3), 114.3
(C3¢), 123.8 (C1¢), 129.2 (C2¢), 159.4 (C4¢), 172.1, 173.5 (C2,
C4). MS (ESI-TOF): m/z = 207 [M + H]+.
References and Notes
(1) Reviews: (a) Tejedor, D.; Garcia-Tellado, F. Org. Prep.
Proced. Int. 2004, 36, 33. (b) Zografos, A. L.; Georgiadis,
D. Synthesis 2006, 3157.
(2) (a) Gill, M.; Steglich, W. Prog. Chem. Org. Nat. Prod. 1987,
51, 1. (b) Rao, Y. S. Chem. Rev. 1976, 76, 625.
(3) For reviews on the Dieckmann condensation, see:
(a) Davis, B. R.; Garrett, P. J. In Comprehensive Organic
Synthesis, Vol. 2; Trost, B. M.; Fleming, I., Eds.; Pergamon:
Oxford, 1991, 806–829. (b) Schaefer, J. P.; Bloomfield, J. J.
Org. React. 1967, 15, 1.
(4) For recent syntheses of tetronic acids via Dieckmann
condensation, see: (a) Pulvinones: Bernier, D.; Moser, F.;
Brückner, R. Synthesis 2007, 2240. (b) See also: Bernier,
D.; Brückner, R. Synthesis 2007, 2249. (c) Retipolide E,
ornatipolide: Ingerl, A.; Justus, K.; Hellwig, V.; Steglich, W.
Tetrahedron 2007, 63, 6548. (d) Abyssomicin C, atrop-
abyssomicin C, and abyssomicin D: Nicolaou, K. C.;
Harrison, S. T. J. Am. Chem. Soc. 2007, 129, 429. (e) (+)-
Tetronolide: Boeckman, R. K. Jr.; Shao, P.; Wrobleski, S.
T.; Boehmler, D. J.; Heintzelman, G. R.; Barbosa, A. J.
J. Am. Chem. Soc. 2006, 128, 10572. (f) Quartromicins:
Trullinger, T. K.; Qi, J.; Roush, W. R. J. Org. Chem. 2006,
71, 6915. (g) Secretase inhibitors: Larbig, G.; Schmidt, B.
J. Comb. Chem. 2006, 8, 480.
(5) Bretschneider, T.; Benet-Buchholtz, J.; Fischer, R.; Nauen,
R. Chimia 2003, 57, 697; and references therein.
(6) Weber, V.; Rubat, C.; Duroux, E.; Lartigue, C.; Madesclaire,
M.; Coudert, P. Bioorg. Med. Chem. 2005, 13, 4552.
(7) For previous studies on the synthesis of pulvinic derivatives
in our laboratory, see: (a) Desage-El Murr, M.; Nowaczyk,
S.; Le Gall, T.; Mioskowski, C.; Amekraz, B.; Moulin, C.
Synlett 2008, No. 3, 386–388 © Thieme Stuttgart · New York