1748
J. Y. Kim et al. / Tetrahedron Letters 49 (2008) 1745–1749
Table 3
References and notes
a-Methylation of chiral a-amino amidine derivatives
1. Goto, T.; Isobe, M.; Coviello, D. A.; Kishi, Y.; Inoue, S. Tetrahedron
1973, 29, 2035.
Me
O
O
i) LHMDS (1.2 equiv)
THF, 25 oC, 2 h
N(iPr)2
N(iPr)2
Ts
N
N
2. For selected synthetic applications of a-amino amidines, see: (a)
Yamada, T.; Suegane, K.; Kuwata, S.; Watanabe, H. Bull. Chem.
Soc. Jpn. 1977, 50, 1088; (b) Yamada, T.; Takashima, K.; Miyazawa,
T.; Kuwata, S.; Watanabe, H. Bull. Chem. Soc. Jpn. 1978, 51,
878.
O
O
N
N
ii) MeI (8 equiv), 12 h
Ts
R
R
Entry
R
Yielda (%)
d.r.b
1
2
3
a
CH(CH3)2
CH2Ph
C(CH3)3
57
51
68
2.7:1
4.0:1
4.1:1
3. Umezawa, H.; Takita, T.; Sugiura, Y.; Otsuka, M.; Kobayashi, S.;
Ohno, M. Tetrahedron 1984, 40, 501.
4. For notable examples, see: (a) McFarland, J. W. J. Org. Chem. 1963,
28, 2179; (b) Tunge, J. A.; Czerwinski, C. J.; Gately, D. A.; Norton,
J. R. Organometallics 2001, 20, 254; (c) Keung, W.; Bakir, F.; Patron,
A. P.; Rogers, D.; Priest, C. D.; Darmohusodo, V. Tetrahedron Lett.
2004, 45, 733.
Isolated yield.
Diastereomeric ratio was determined by HPLC.
b
E+
5. (a) Bae, I.; Han, H.; Chang, S. J. Am. Chem. Soc. 2005, 127, 2038; (b)
Chang, S.; Lee, M.; Jung, D. Y.; Yoo, E. J.; Cho, S. H.; Han, S. K.
J. Am. Chem. Soc. 2006, 128, 12366.
6. Yoo, E. J.; Bae, I.; Cho, S. H.; Han, H.; Chang, S. Org. Lett. 2006, 8,
1347.
7. (a) Cho, S. H.; Yoo, E. J.; Bae, I.; Chang, S. J. Am. Chem. Soc. 2005,
127, 16046; (b) Cho, S. H.; Chang, S. Angew. Chem., Int. Ed. 2007, 46,
1897.
8. Kim, S. H.; Jung, D. Y.; Chang, S. J. Org. Chem. 2007, 72,
9769.
E
O
N(iPr)2
N
major
O
O
N
N
N(iPr)2
LHMDS
O
Ts
R
N
O
O
N
R
N
Li
N
Ts
R
N(iPr)2
Ts
E
O
N(iPr)2
Ts
N
minor
O
E+
R
9. (a) Ijsselstijn, M.; Cintrat, J.-C. Tetrahedron 2006, 62, 3837; (b)
Zhang, X.; Hsung, R. P.; You, L. Org. Biomol. Chem. 2006, 4,
2679; (c) Zhang, X.; Hsung, R. P.; Li, H. Chem. Commun. 2007,
2420.
Fig. 1. Proposed transition state of the asymmetric a-alkylation.
p-toluenesulfonyl azide and methanol resulted in the corres-
ponding a-amino imidate in 60% yield (Eq. 1).
10. For recent reviews on ynamines and ynamides, see: (a) Zificsak, C. A.;
Mulder, J. A.; Hsung, R. P.; Rameshkumar, C.; Wei, L.-L. Tetra-
hedron 2001, 57, 7575; (b) Mulder, J. A.; Kurtz, K. C. M.; Hsung,
R. P. Synlett 2003, 1379.
11. For a special issue on chemistry of electron-deficient ynamines and
ynamides, see: Tetrahedron 2006, 62, 3771–3938.
12. For recent reports on ynamides, see: (a) Couty, S.; Meyer, C.; Cossy,
J. Angew. Chem., Int. Ed. 2006, 45, 6726; (b) Dunetz, J. R.; Danheiser,
R. L. J. Am. Chem. Soc. 2005, 127, 5776; (c) Zhang, Y. Tetrahedron
Lett. 2005, 46, 6483.
13. Witulski, B.; Stengel, T. Angew. Chem., Int. Ed. 1998, 37, 489.
14. Frederick, M. O.; Mulder, J. A.; Tracey, M. R.; Hsung, R. P.; Huang,
J.; Kurtz, K. C. M.; Shen, L.; Douglas, C. J. J. Am. Chem. Soc. 2003,
125, 2368.
Ph
Boc
Boc
Ph
CuI (10 mol %)
Et3N (1.2 equiv)
O
N
N
Me
Ts N3
MeOH
ð1Þ
N
(1.2 equiv)
(1.2 equiv)
Ts
CHCl3, 25 o
C
60%
(1)
In summary, we have demonstrated that ynamides can
be utilized as a new type of reacting partner in the Cu-cata-
lyzed three-component coupling reactions for the prepara-
tion of a-amino amidines and imidates. The substrate
scope is very broad including a wide range of ynamides,
sulfonyl or phosphoryl azides, and amines or alcohols.
Synthetic applicability of the produced a-amino amidines
was demonstrated by the diastereoselective a-alkylation.
15. Dunetz, J. R.; Danheiser, R. L. Org. Lett. 2003, 5, 4011.
16. Hirano, S.; Tanaka, R.; Urabe, H.; Sato, F. Org. Lett. 2004, 6,
727.
17. Zhang, Y.; Hsung, R. P.; Tracey, M. R.; Kurtz, K. C. M.; Vera, E. L.
Org. Lett. 2004, 6, 1151.
18. Riddell, N.; Villeneuve, K.; Tam, W. Org. Lett. 2005, 7, 3681.
19. For preparation of TIPS alkynyl bromides, see: Hofmeister, H.;
Annen, K.; Laurent, H.; Wiechert, R. Angew. Chem., Int. Ed. Engl.
1984, 23, 727.
Acknowledgments
This research was supported by the KOSEF grant (R01-
2007-000-10618-0), and KAIST through the URP (under-
graduate research program) and CMDS. The authors
thank Dr. Doo Young Jung for the initial experiments.
We also acknowledge the Korea basic science institute
(KBSI) for the mass analysis.
20. See the Supplementary data for details.
21. (a) Fache, F.; Schulz, E.; Tommasino, M. L.; Lemaire, M. Chem. Rev.
2000, 100, 2159; (b) Kaes, C.; Katz, A.; Hosseini, M. W. Chem. Rev.
2000, 100, 3553.
22. (a) Chan, T. R.; Hilgraf, R.; Sharpless, K. B.; Fokin, V. V. Org. Lett.
2004, 6, 2853; (b) Whiting, M.; Fokin, V. V. Angew. Chem., Int. Ed.
2006, 45, 3157.
23. General procedure for the synthesis of a-amino amidines: To a stirred
mixture of azide (0.6 mmol), ynamide (0.5 mmol), and CuI
(0.05 mmol) in CHCl3 (1 mL) was slowly added amine nucleophile
(0.6 mmol) at room temperature under an N2 atmosphere. Triethyl-
amine (0.6 mmol) was added after the addition of amine, if necessary
(entries 10 and 12 of Table 2). After 6 h, the reaction mixture was
diluted by adding CH2Cl2 (3 mL) and aqueous NH4Cl solution
Supplementary data
Supplementary data associated with this article can be