J. S. Yadav et al. / Tetrahedron Letters 49 (2008) 2031–2033
2033
2. Colvin, E. Silicon in Organic Synthesis; Butterworth: London, 1981; p
97; Hosomi, A. Acc. Chem. Res. 1988, 21, 200–206; Langkopf, E.;
Schinzer, D. Chem. Rev. 1995, 95, 1375–1408.
Ph
OH
10 mol % I2
CH2Cl2, r.t.
3. Kobayashi, S. Eur. J. Org. Chem. 1999, 15–27.
TMS
Ph
+
Ph
4. (a) Nicholas, K. M.; Mulvaney, M.; Bayer, M. J. Am. Chem. Soc. 1980,
102, 2508–2512; (b) Nicholas, K. M. Acc. Chem. Res. 1987, 20, 207–
214; (c) Nishibayashi, Y.; Milton, M. D.; Inada, Y.; Yoshikawa, M.;
Wakiji, I.; Hidai, M.; Uemura, S. Chem. Eur. J. 2005, 11, 1433–1451;
(d) Zhan, Z. P.; Yu, J. L.; Liu, H. J.; Cui, Y. Y.; Yang, R. F.; Yang, W.
Z.; Li, J. P. J. Org. Chem. 2006, 71, 8298–8301.
5. (a) Liu, Z.; Liu, L.; Shafiq, Z.; Wu, Y.-C.; Wang, D.; Chen, Y.-J.
Tetrahedron Lett. 2007, 48, 3963–3967; (b) Schwier, T.; Rubin, M.;
Gevorgyan, V. Org. Lett. 2004, 6, 1999–2001; (c) Sanz, R.; Miguel, D.;
Martınez, A.; Alvarez-Gutierrez, J. M.; Rodrıguez, F. Org. Lett. 2007,
9, 727–730.
6. (a) Togo, H.; Iida, S. Synlett 2006, 2159–2175; (b) Lin, X.-F.; Cui,
S.-L.; Wang, Y.-G. Tetrahedron Lett. 2006, 47, 4509–4512; (c) Chen,
W.-Y.; Lu, J. Synlett 2005, 1337–1339; (d) Royer, L.; De, S. K.; Gibbs,
R. A. Tetrahedron Lett. 2005, 46, 4595–4597; (e) Banik, B. K.;
Fernandez, M.; Alvarez, C. Tetrahedron Lett. 2005, 46, 2479–2482; (f)
Wang, S.-Y. Synlett 2004, 2642–2643; (g) Ko, S.; Sastry, M. N. V.; Lin,
C.; Yao, C.-F. Tetrahedron Lett. 2005, 46, 5771–5774.
7. (a) Yadav, J. S.; Reddy, B. V. S.; Hashim, S. R. J. Chem. Soc., Perkin
Trans. 1 2000, 3082–3084; (b) Yadav, J. S.; Reddy, B. V. S.;
Premalatha, K.; Swamy, T. Tetrahedron Lett. 2005, 46, 2687–2690;
(c) Yadav, J. S.; Reddy, B. V. S.; Sabitha, G.; Reddy, G. S. K. K.
Synthesis 2000, 1532–1534; (d) Yadav, J. S.; Reddy, B. V. S.; Rao, C.
V.; Chand, P. K.; Prasad, A. R. Synlett 2001, 1638–1640; (e) Yadav, J.
S.; Reddy, B. V. S.; Reddy, M. S.; Prasad, A. R. Tetrahedron Lett.
2002, 43, 9703–9706.
8. General procedure: To a stirred solution of 3-phenyl-1-thien-2-ylprop-
2-yn-1-ol (1 mmol) and phenyl(trimethylsilyl)acetylene (1 mmol) in
dichloromethane (10 mL), iodine (10 mol %) was added at 0 °C and the
mixture was stirred for the appropriate time at this temperature. After
complete conversion as indicated by TLC, the reaction mixture was
quenched with water (10 mL) and extracted with dichloromethane
(3 Â 15 mL). The combined extracts were washed with a 15% solution
of aqueous sodium thiosulfate, dried over anhydrous Na2SO4 concen-
trated in vacuo and purified by column chromatography on silica
gel (Merck 60–120 mesh, ethyl acetate–hexane, 1:9) to afford pure
2-(3-phenyl-1-phenylethynylprop-2-ynyl)thiophene. Spectral data for
selected products:
Ph
3i
Scheme 2. Preparation of 3i.
3-phenylprop-2-yn-1-ol underwent smooth coupling with
alkynylsilanes to produce the corresponding 1,4-diynes in
excellent yields (Table 1, entries d–h). In addition, doubly
activated (E)-1,5-diphenyl-1-penten-4-yn-3-ol also under-
went facile nucleophilic substitution with alkynylsilanes
to furnish the respective 1,4-enediynes (Scheme 2, Table
1, entries i–l).
In all the cases, the reactions proceeded smoothly at
room temperature under the influence of 10 mol % of
iodine. This method is compatible with aryl alkyl ethers,
alkynes and alkenes present in the molecule. It should be
noted that alkynylation of all the substrates led exclusively
to the formation of propargylic products and no traces of
allenic side products were detected. As a solvent, dichloro-
methane gave the best results compared to THF, 1,4-diox-
ane and acetonitrile. All the products were characterized by
1H, 13C NMR, IR and mass spectrometry. The scope and
generality of this process are illustrated in Table 1.8
However, in the absence of iodine, the reaction did not
proceed even after a long reaction time. Interestingly, the
use of a catalytic amount of TMSI was found to be an
equally effective catalyst for this conversion. However,
the use of alkynyltri-n-butyltin in place of the alkynylsilane
did not yield the desired product under these reaction con-
ditions, perhaps because iodine does not interact with allyl-
tri-n-butyltin. Thus, the combination of allyltrimethylsilane
and iodine is a useful system for alkynylation of propargyl
alcohols.9 No additives or activators are required for the
activation of the –OH group. The advantages of this
method are the ready availability of alcohols and no salt
formation.
2-(1,5-Diphenylpenta-1,4-diyn-3-yl)thiophene (d): Liquid, IR (KBr): m
3063, 2922, 2853, 1734, 1632, 1441, 1233, 1073, 1031, 839, 755, 695,
.
599 cmÀ1 1H NMR (300 MHz, CDCl3,): d 7.60 (q, 2H, J = 1.6 Hz),
7.27–7.40 (m, 10H), 7.10 (t, 1H, J = 4.5 Hz), 5.80 (s, 1H). 13C NMR
(proton decoupled, 75 MHz, CDCl3): d 132.0, 131.7, 128.8, 128.6,
128.4, 127.1, 126.9, 126.6, 126.4, 125.8, 125.3, 100.1, 99.8, 52.5. EIMS:
m/z: (M+H+): 299. ESI-HRMS calcd for C13H9S (M+À101): 197.0424.
Found: 197.0419.
In summary, we have described a novel and an efficient
protocol for the alkynylation of aryl propargyl alcohols
using molecular iodine as the catalyst. In addition to its
efficiency, simplicity and mild reaction conditions, this
method provides excellent yields of 1,4-diynes with high
selectivity, which makes it a useful and attractive process
for the direct substitution of propargyl alcohols with
alkynylsilanes.
1,4-Dimethoxy-2-(1,5-diphenylpenta-1,4-diyn-3-yl)benzene (g): Liquid,
IR (KBr): m 2924, 2854, 1723, 1602, 1496, 1457, 1235, 1046, 751 cmÀ1
.
1H NMR (300 MHz, CDCl3): d 3.77 (s, 3H), 3.88 (s, 3H), 5.66 (s, 1H),
6.56 (s, 1H), 6.85–6.75 (m, 3H), 7.63–7.09 (m, 9H). 13C NMR (proton
decoupled, 75 MHz, CDCl3): d 127.7, 127.5, 127.1, 126.5, 123.5, 123.1,
122.8, 113.9, 112.8, 112.1, 57.7, 56.5, 55.6. ESIMS: m/z: (M+): 352.
ESI-HRMS calcd for C25H21O2 (M+H+): 353.0943. Found: 353.0931.
1,5-Diphenyl-3-(2-phenylethynyl)pent-1-ene-4-yne (i): Liquid, IR
(KBr): m 3023, 2923, 2854, 2167, 1630, 1485, 1440, 1283, 1096, 1026,
950, 855, 756, 694, 648, 610 cmÀ1. 1H NMR (300 MHz, CDCl3): d 5.20
(d, 1H, J = 9.8 Hz), 6.40–6.60 (m, 2H), 7.10–7.55 (m, 15H). 13C NMR
(proton decoupled, 75 MHz, CDCl3 + DMSO): d 167.1, 151.5, 99.0,
33.2, 30.5, 30.3, 28.3, 27.4, 23.7, 21.3, 12.9. EIMS m/z: (M+H+): 319.
ESI-HRMS calcd for C17H13 (M+À101): 217.1017. Found: 217.1018.
9. (a) Sakurai, H.; Sasaki, K.; Hosomi, A. Tetrahedron Lett. 1981, 22,
745–748; (b) Jung, M. E.; Blumenkopf, T. A. Tetrahedron Lett. 1978,
19, 3657–3660.
Acknowledgement
N.T. and N.M.R. thank CSIR, New Delhi, for the
award of the fellowships.
References and notes
1. (a) Yamamoto, Y.; Asao, N. Chem. Rev. 1993, 93, 2207–2293; (b)
Marshall, J. A. CHEMTRACTS 1992, 5, 75–98.