Journal of the American Chemical Society
Page 4 of 5
Corresponding Author
1
2
3
4
5
6
7
Notes
The authors declare no competing financial interests.
8
40%
2p
3p
a
Reaction conditions: 2 (0.05 M in PhF),
b
IPrAuNTf2 (5 mol %), 1b (2 equiv), rt, 2 h.
Isolated yield. c DCE as solvent. d 1.5 equiv. of
1b.
ACKNOWLEDGMENT
The authors thank NSF (CHE-1301343) and NIH (R01
GM084254) for financial support.
8
9
REFERENCES
To gain additional insights to the reaction mechanism, we
examined the gold-catalyzed reactions of the α-diazo β-diketone 7
(Scheme 3A). While too slow with either IPrAuNTf2 or L4AuNTf2,
(1) For reviews, see: a) Doyle, M. P.; McKervey, M. A.; Ye, T. Modern
catalytic methods for organic synthesis with diazo compounds: from
cyclopropanes to ylides; Wiley: New York, 1998; b) Davies, H. M. L.;
Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861; c) Taber, D. F. In
Carbon-Carbon σ-Bond Formation; Pattenden, G., Ed.; Pergamon
Press: Oxford, England ; New York, 1991; Vol. 3, p 1045.
(2) Zhang, L. Acc. Chem. Res. 2014, 47, 877.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
t
the reaction in the presence of BuBrettPhosAuNTf2 (5 mol%)
proceeded to completion in
4 days. In comparison, the
corresponding oxidative gold catalysis using the same catalyst took
only 2 h and, moreover, afforded higher yields, highlighting the
additional advantages of our oxidative gold catalysis over the diazo
approach. Importantly, the nearly identical ratios of 3a/4a/5a
corroborate the likely formation of a common reactive intermediate
(i.e., B) in both cases. The C-H insertion step was probed by
deuterium kinetic isotope effect (KIE). As shown in Scheme 3B, in
the internal competition a KIE of 2.34 was observed.15 This value
indicates that the C-H bond is significantly elongated in the
insertion transition state. In contrast, inverse KIEs were observed
with donor-substituted gold carbenes.8c
(3) For selected examples using diazo substrates, see: a) Diaz-Requejo, M.
M.; Perez, P. J. Chem. Rev. 2008, 108, 3379; b) Fructos, M. R.;
Belderrain, T. R.; de Fremont, P.; Scott, N. M.; Nolan, S. P.; Diaz-
Requejo, M. M.; Perez, P. J. Angew. Chem. Int. Ed. 2005, 44, 5284; c)
Prieto, A.; Fructos, M. R.; Mar Díaz-Requejo, M.; Pérez, P. J.; Pérez-
Galán, P.; Delpont, N.; Echavarren, A. M. Tetrahedron 2009, 65, 1790;
d) Jadhav, A. M.; Pagar, V. V.; Liu, R.-S. Angew. Chem., Int. Ed. 2012,
51, 11809; e) Briones, J. F.; Davies, H. M. L. J. Am. Chem. Soc. 2012,
134, 11916; f) Cao, Z.-Y.; Wang, X.; Tan, C.; Zhao, X.-L.; Zhou, J.;
Ding, K. J. Am. Chem. Soc. 2013, 135, 8197; g) Yu, Z.; Ma, B.; Chen,
M.; Wu, H.-H.; Liu, L.; Zhang, J. J. Am. Chem. Soc. 2014, 136, 6904;
h) Xi, Y.; Su, Y.; Yu, Z.; Dong, B.; McClain, E. J.; Lan, Y.; Shi, X.
Angew. Chem., Int. Ed. 2014, 53, 9817.
(4) For our selected work, see: a) Ye, L.; Cui, L.; Zhang, G.; Zhang, L. J.
Am. Chem. Soc. 2010, 132, 3258; b) Wu, G.; Zheng, R.; Nelson, J.;
Zhang, L. Adv. Synth. Catal. 2014, 356, 1229; c) Ji, K.; Zhang, L. Org.
Chem. Front. 2014, 1, 34; d) Ji, K.; Zhao, Y.; Zhang, L. Angew. Chem.,
Int. Ed. 2013, 52, 6508; e) Luo, Y.; Ji, K.; Li, Y.; Zhang, L. J. Am.
Chem. Soc. 2012, 134, 17412; f) Lu, B.; Li, C.; Zhang, L. J. Am. Chem.
Soc. 2010, 132, 14070.
(5) For selected work, see: a) Ghorpade, S.; Su, M.-D.; Liu, R.-S. Angew.
Chem., Int. Ed. 2013, 52, 4229; b) Vasu, D.; Hung, H.-H.; Bhunia, S.;
Gawade, S. A.; Das, A.; Liu, R.-S. Angew. Chem., Int. Ed. 2011, 50,
6911; c) Qian, D.; Zhang, J. Chem. Commun. 2012, 48, 7082; d)
Davies, P. W.; Cremonesi, A.; Martin, N. Chem. Commun. 2011, 47,
379; e) Henrion, G.; Chavas, T. E. J.; Le Goff, X.; Gagosz, F. Angew.
Chem., Int. Ed. 2013, 52, 6277; f) Xu, M.; Ren, T.-T.; Li, C.-Y. Org.
Lett. 2012, 14, 4902; g) Wang, T.; Shi, S.; Hansmann, M. M.;
Rettenmeier, E.; Rudolph, M.; Hashmi, A. S. K. Angew. Chem., Int.
Ed. 2014, 53, 3715; h) Shi, S.; Wang, T.; Yang, W.; Rudolph, M.;
Hashmi, A. S. K. Chem. Eur. J. 2013, 19, 6576; i) Sun, N.; Chen, M.;
Liu, Y. J. Org. Chem. 2014, 79, 4055; j) Bhunia, S.; Ghorpade, S.;
Huple, D. B.; Liu, R.-S. Angew. Chem., Int. Ed. 2012, 51, 2939; k)
Chen, M.; Chen, Y.; Sun, N.; Zhao, J.; Liu, Y.; Li, Y. Angew. Chem.,
Int. Ed. 2015, 1200.
(6) He, W.; Xie, L.; Xu, Y.; Xiang, J.; Zhang, L. Org. Biomol. Chem. 2012,
10, 3168.
(7) Wang, Y.; Muratore, M. E.; Echavarren, A. M. Chem. - Eur. J. 2015,
DOI: 10.1002/chem.201406318.
(8) a) Lemiere, G.; Gandon, V.; Cariou, K.; Hours, A.; Fukuyama, T.;
Dhimane, A. L.; Fensterbank, L.; Malacria, M. J. Am. Chem. Soc. 2009,
131, 2993; b) Escribano-Cuesta, A.; López-Carrillo, V.; Janssen, D.;
Echavarren, A. M. Chem. - Eur. J. 2009, 15, 5646; c) Horino, Y.;
Yamamoto, T.; Ueda, K.; Kuroda, S.; Toste, F. D. J. Am. Chem. Soc.
2009, 131, 2809.
(9) He, W.; Li, C.; Zhang, L. J. Am. Chem. Soc. 2011, 133, 8482.
(10)See supporting information for details.
(11)Hesp, K. D.; Stradiotto, M. J. Am. Chem. Soc. 2010, 132, 18026.
(12)a) Bhunia, S.; Liu, R.-S. J. Am. Chem. Soc. 2008, 130, 16488; b) Bolte,
B.; Gagosz, F. J. Am. Chem. Soc. 2011, 133, 7696.
(13)For an example of gold catalysis involving bifurcation, see: Ye, L.;
Wang, Y.; Aue, D. H.; Zhang, L. J. Am. Chem. Soc. 2012, 134, 31.
(14)Katritzky, A. R.; Lang, H. J. Org. Chem. 1995, 60, 7612.
(15)Similar KIEs are reported on metal carbene insertions into unactivated
C(sp3)-H bonds. For references, see: a) Davies, H. M. L.; Hansen, T.;
Churchill, M. R. J. Am. Chem. Soc. 2000, 122, 3063; b) Mbuvi, H. M.;
Woo, L. K. Organometallics 2008, 27, 637.
A
t
BuBrettPhosAuNTf2 (5 mol %), 1b (1.5 equiv), DCE, 2 h
Me Me
O
1.00
1.55
0.70
0.82
)
23% (
Me
)
36% (
)
16% (
)
19% (
nBu
Me
Me
C6H13
O
O
O
2a
Ph
Me
C5H11
O
Me
Ph
Me
nBu
Me Me
Bz
Bz
Bz
6a
13% (0.68)
O
5a
4a
3a
19% (1.00)
30% (1.56)
14% (0.73)
nBu
Bz
O
N2
7
tBuBrettPhosAuNTf2 (5 mol %), DCE, 4 days
B
Me Me
L4AuCl/AgNTf2
Me
Me
Me
nBu
Me
Me
O
Me
(5 mol%)
1b
(2 equiv)
H
D
O
PhF, rt, 2 h
O
nBu
nBu
Bz
nBu
D
D
H
Bz
Bz
KH/ KD = 2.34
H
Ph
2a-d
90.2%
4a-d (8%)
3a-d (43.7%)
3a (26.3%)
Scheme 3. Mechanistic studies.
In summary, we have discovered for the first time that
oxidatively generated gold carbenes in the form of β-diketone-α-
gold carbenes can easily insert intramolecular into unactivated
C(sp3)-H bonds in likely concerted manners. Substrate
conformation control via the Thorpe-Ingold effect is the key design
feature that enable the generally good to excellent efficiencies in
the examined cases. This novel reactivity offers efficient access to
synthetically versatile cyclopentanones including spiro-, bridged,
and fused bicyclic ones from readily available ynone substrates.
This study represents a remarkable advance in replacing toxic and
potentially explosive diazo ketones with benign and easily
available alkynes in achieving one of the hallmark and most
valuable transformation of metal carbenes/carbenoids, i.e.,
insertions into unactivated C(sp3)-H bonds.
ASSOCIATED CONTENT /
Supporting Information
Experimental details, compound characterization and spectra. This
material is available free of charge via the Internet at
AUTHOR INFORMATION
ACS Paragon Plus Environment