328
M. Gaber et al. / Journal of Molecular Structure 875 (2008) 322–328
F.A. El-Saied, M.I. Ayad, R.M. Issa, S.A. Aly, Pol. J. Chem. 75
(2001) 941;
F.A. El-Saied, M.I. Ayad, R.M. Issa, S.A. Aly, Pol. J. Chem. 75
(2001) 773, and references therein.
for the current carriers [42]. The temperature range in
which the conductivity values remain constant indicates
that the energy is consumed in the phase transition rather
than in the thermal agitation of electrons [42].
[17] J.H. Yoe, A.L. Jones, Ind. Eng. Chem. Analyst Edit. 16 (1944) 14.
[18] P. Job, Ann. Chem. 9 (1928) 113;
W.C. Vosburg, G.R. Cooper, J. Am. Chem. Soc. 63 (1941) 437.
[19] A. Harvey, D. Manning, J. Am. Chem. Soc. 72 (1950) 4488.
[20] W.J. Geary, Coord. Chem. Rev. 7 (1971) 81.
[21] B. Beecroft, M.J.M. Canpbell, R. Grzeskowiak, J. Inorg. Nucl.
Chem. 36 (1974) 55.
4. Conclusion
The design and synthesis of a new hydroxy azodyes from
4-aminoantipyrine have been demonstrated. The IR spec-
tra of the complexes indicate that the azo-compounds coor-
dinate to the divalent metal ions (Co, Ni and Cu) through
ONO as tridentate ligands. From the electronic, ESR spec-
tra, conductance, magnetic moments and thermal analyses
measurements, the structures of the complexes are given in
Fig. 2. The reaction between the azodyes and Co(II), Ni(II)
and Cu(II) ions are also studied spectrophotometry in solu-
tion. The optimum conditions for complex formation, stoi-
chiometry and stability constants are determined. The
results indicate that the investigated azodye can be used
as an indicator for spectrophotometric determination of
Co(II), Ni(II) and Cu(II) ions.
[22] P.K. Radhakrishnan, P. Indrasenan, C.G.R. Nair, Polyhedron 3
(1984) 67;
H.M. El-Tabl, F.A. El-saied, M.I. Ayad, Synth. React. Inorg. Met.
Org. Chem. 32 (2002) 1245;
S.M. Annigeri, M.P. Sathisha, V.K. Revankar, Transit. Met. Chem.
32 (2007) 81.
[23] A.N. Speca, N.M. Karayanis, L.L. Pytlewski, Inorg. Chim. Acta 9
(1974) 87.
[24] K. Nakamoto, Infrared and Raman Spectra of Inorganic and
Coordination Compounds, Wiley, New York, 1986.
[25] K. Nakamoto, Infrared Spectra of Inorganic and Coordination
Compounds, Wiley, New York, 1970.
[26] N. Mondal, D.K. Dey, S. Mitra, K.M. Abdul Malik, Polyhedron 19
(2000) 2707.
[27] S. Chandra, U. Kumar, Spectrochim. Acta A 61 (2005) 219.
[28] A.B.P. Lever, D. Odgen, J. Chem. Soc. A 204 (1967).
[29] L. Sacconi, M. Ciampolini, F. Maggio, F.P. Cavasino, J. Am. Chem.
Soc. 84 (1962) 3246;
References
B.N. Figgis, Introduction to Ligand Fields, John Wiley & Sons, New
York, 1967.
[30] F.A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry. The
Elements of First Transition Series, Wiley Interscience, New York,
1988.
[31] A.B.P. Lever, Crystal Field, Spectra Inorganic Electronic Spectros-
copy, first ed., Elsevier, Amsterdam, 1968, pp. 249–360.
[32] F.A. Cotton, G. Wilkinson, C.A. Murillo, M. Bochmann, Advanced
Inorganic Chemistry, sixth ed., Wiley, New York, 1999;
D.R. Zhu, Y. Song, Y. Xu, Y. Zhang, S.S. Raj, H.K. Fun, X.Z. You,
Polyhedron 19 (2000) 2019;
[1] T. Ishizuki, K. Matsumoto, A. Yuchi, T. Ozawa, H. Yamada, H.
Wad, Talanta 41 (1994) 799.
[2] Y. Okada, T. Kawanishi, Z. Morita, Dyes Pigments 27 (1995) 271.
[3] K. Grudpan, P. Sooksamiti, S. Laiwraungrath, Anal. Chim. Acta 314
(1995) 51.
[4] Y. Okada, M. Asano, Z. Morita, Dyes Pigments 31 (1996) 53.
[5] M.M. Moustafa, A.S. Amin, R.M. Issa, Monatsh. Fur Chem. 128
(1997) 423.
[6] Y. Okada, A. Sugane, A. Watanabe, Z. Morita, Dyes Pigments 38
(1998) 19.
G.G. Mohamed, Spectrochim. Acta A 57 (2001) 1643.
[33] D.X. West, J.K. Swearingen, A.K. El-Sawaf, Transit. Met. Chem. 25
(2000) 80.
[7] G.A. Ibanez, G.M. Escandar, Polyhedron 17 (1998) 4433.
[8] M. Thakur, M.K. Deb, Talanta 49 (1999) 561.
[9] R.J. Cassella, V.A. Salima, L.S. Jesuino, R.E. Santelli, S.L. Ferreira,
M.S. Decarvalho, Talanta 54 (2001) 61.
[10] A. Amin, I. Ahmed, M. Moustafa, Anal. Lett. 3 (2001) 749.
[11] V.K. Singh, N.K. Agnihotri, H.B. Singh, R.L. Sharma, Talanta 55
(2001) 799.
[12] M. Gaber, M. Hassanein, H.A. Ahmed, Indian J. Tex. Res. 11 (1986) 48;
K.Y. El-Baradie, R.M. Issa, M. Gaber, Indian J. Chem. 43 (2004) 1126;
A.M. Khedr, M. Gaber, R.M. Issa, H. Erten, Dyes Pigments 67 (2005)
117;
[34] M.H. Sonar, A.S.R. Murty, J. Inorg. Nucl. Chem. 42 (1980) 815.
[35] R.J. Dudley, B.J. Hathaway, J. Chem. Soc. 1725 (1970);
B.J. Hathaway, D.E. Billing, Coord. Chem. Rev. 5 (1970) 143.
[36] D. Kivelson, R. Neiman, J. Chem. Phys. 35 (1961) 149.
[37] R.K. Ray, G.B. Kauffmann, Inorg. Chim. Acta 174 (1990) 237;
R.K. Ray, G.B. Kauffmann, Inorg. Chim. Acta 174 (1990) 257;
E.I. Solomon, M.J. Baldwin, M.D. Lowery, Chem. Rev. 92 (1992)
521;
Z.L. Lu, C.Y. Duan, Y.P. Tian, X.Z. You, Inorg. Chem. 35 (1996)
2253;
M. Gaber, M.M. Ayad, Y.S.Y. El-Sayed, Spectrochim. Acta A 62 (2005)
694;
E. Place, J.L. Zimmerman, E. Mulliz, G. Guillot, C. Bois, J.C.
Chottard, Inorg. Chem. 37 (1998) 4030;
M.M. Whittaker, W.R. Duncan, J.W. Whittaker, Inorg. Chem. 35
(1996) 382.
A.M. Khedr, M. Gaber, Spectrosc. Lett. 38 (2005) 431.
[13] M.M. Omar, G.G. Mohamed, Spectrochim. Acta 61 (2005) 929.
[14] S. Pramanik, S. Dhara, S.S. Bhattacharyya, P. Chattopadhyay, Anal.
Chim. Acta 556 (2006) 430.
[38] A.W. Coats, J.P. Redfern, Nature 201 (1964) 68.
[39] S.S. Kandil, F.I. Abdel-Hay, R.M. Issa, J. Therm. Anal. Calorim. 63
(2001) 173.
[40] M.R.P. Kurup, E. Lukose, K. Muraleedharan, J. Therm. Anal.
Calorim. 59 (2000) 815.
[15] K.C. Raju, N.T. Madhu, P.K. Radhakrishnan, Synth. React. Inorg.
Met. Org. Chem. 32 (2002) 1115, and references therein;
N.T. Nadhu, P.K. Radhakrishnan, E. Williams, W. Linert, J. Therm.
Anal. Calorim. 79 (2005) 157, and references therein.
[16] P.K. Radhakrishnan, J. Less Common Metals 107 (1985) 45;
B.A. El-Sayed, M.M. Sallam, M.F. Ishak, M.S. Antonious, Mater.
Lett. 34 (1998) 280;
[41] Z.M. Zaki, G.G. Mohamed, Spectrochim. Acta A 56 (2000) 1245.
[42] A.M. Donia, E.M. Ebeid, Thermochim. Acta 131 (1988) 1.