(K = K2 = 3.8 ¥ 104 M-1) obtained from fluorescence data seems to
indicate that some intercalation of the AO residue attached to the
nanoparticle is also occurring.45,46 Fluorescence data of the AO-
PEG-Au NPs/DNA system show similarities with AO-TEG-Au
NPs/DNA which suggest a dual mode of binding for the former
system as well. The results show that the Acridine Orange residue,
even if linked to a bulky substituent (nanoparticle), is able to
intercalate into DNA, although the AO intercalation should be
only partial. It was, indeed, found that the binding constant for
intercalation into DNA of AO, under conditions similar to that
used in present work, is close to 105 M-1,45 whereas addition of
substituents in the opposite position with respect to the aromatic
nitrogen decreases the binding affinity (K £ 8 ¥ 104 M-1),46 the latter
finding being in agreement with the value obtained for AHLB
intercalation into DNA (Table 2). If one reasonably supposes that
a higher binding affinity reflects a deeper dye insertion, it can be
suggested that dye penetration follows the order AO > AHLB >
AO-Au NP.
Preliminary FACS flow cytometry tests indicate the AO-TEG-
Au NPs are able to cross the cell membrane and are absorbed by
the CHO cells at quite a low concentration. These results for the
AO-TEG-Au NPs agree with previous findings that indicate that
gold nanoparticles undergo endocytosis and that high NP uptake
occurs under experimental conditions similar to those used in the
present work (also important is likely to be the higher adhesion
to cell membranes of cationic Au NPs with respect to anionic Au
NPs).47–49 Our results suggest that the absorption could occur on
a picomolar scale with respect to the whole NP, opening the way
for potential uses in cellular biology.
10 X. Li, J. Wang, L. Sun and Z. Wang, Chem. Commun., 2010, 46, 988–
990.
11 S. Ribrioux, G. Kleymann, W. Haase, K. Heitmann, K. Ostermeier and
H. J. Michel, J. Histochem. Cytochem., 1996, 44, 207–213.
12 U. H. F. Bunz and V. M. Rotello, Angew. Chem., Int. Ed., 2010, 49,
3268–3279.
13 G. Wang, J. I. Zhang and R. W. Murray, Anal. Chem., 2002, 74, 4320–
4327.
14 B. H. Robinson, A. Lo¨ffler and G. Schwarz, J. Chem. Soc., Faraday
Trans. 1, 1973, 69, 56–69.
15 V. V. Tscharner and G. Schwarz, Biophys. Struct. Mech., 1979, 5, 75–90.
16 J. Kapuscinski and Z. Darzynkiewicz, J. Biomol. Struct. Dyn., 1987, 5,
127–143.
17 J. Sharma, R. Chhabra, C. S. Andersen, K. V. Gothelf, H. Yan and Y.
Liu, J. Am. Chem. Soc., 2008, 130, 7820–7821.
18 G. Han, T. Mokari, C. Ajo-Franklin and B. E. Cohen, J. Am. Chem.
Soc., 2008, 130, 15811–15813.
19 H. R. Mahler, B. Kline and B. D. Mehrotra, J. Mol. Biol., 1964, 9,
801–11.
20 P. Mulvaney, Langmuir, 1996, 12, 788–800.
21 C. Courvoisier, M. J. Paret, J. Chantepie, J. Gore´, G. Fournet and G.
Quash, Bioorg. Chem., 2006, 34, 49–58.
22 E. Miethke and V. Zanker, Z. Phys. Chem., 1958, 18, 375–390.
23 Y. Kubo, S. Uchida, Y. Kenmochi and T. Okubo, Tetrahedron Lett.,
2005, 46, 4369–4372.
24 L. A. Porter, D. Jr. Ji, S. L. Westcott, M. Graupe, R. S. Czernuszewicz,
N. J. Halas and T. R. Lee, Langmuir, 1998, 14, 7378–7386.
25 H. P. Klug and L. E. Alexander, in X-ray Diffraction Procedures: for
Polycrystalline and Amorphous Materials, 2nd edn, J. Wiley and Sons
Inc., New York, 1974.
26 A. Henglein and M. Giersig, J. Phys. Chem. B, 1999, 103, 9533–
9539.
27 U. Hotje, C. Rose and M. Binnewies, Solid State Sci., 2003, 5, 1259–
1262.
28 A. I. Frenkel, S. Nemzer, I. Pister, L. Soussan and T. Harris, J. Chem.
Phys., 2005, 123, 184701.
29 T. Shimizu, T. Teranishi, S. Hasegawa and M. Miyake, J. Phys. Chem.
B, 2003, 107, 2719–2724.
In summary, a multifunctional probe is able to bind to DNA
with a characteristic photoresponse in both absorbance and
emission and can cross the cellular membrane and be easily
detected inside the cell.
30 S. J. Leach and H. A. Scheraga, J. Am. Chem. Soc., 1960, 82, 4790–4792.
31 B. E. Bowler, K. J. Ahmed, W. I. Sundquist, L. S. Hollis, E. E. Whang
and S. J. Lippard, J. Am. Chem. Soc., 1989, 111, 1299–1306.
32 T. Biver, B. Garc´ıa, J. M. Leal, F. Secco and E. Turriani, Phys. Chem.
Chem. Phys., 2010, 12, 13309–13317.
33 G. G. Hammes and C. D. Hubbard, J. Phys. Chem., 1966, 70, 2889–
2895.
Acknowledgements
34 A. D. James and B. H. Robinson, Adv. Mol. Relax. Processes, 1976, 8,
Prof Yitzhak Tor, Department of Chemistry & Biochemistry,
University of California, San Diego, is kindly acknowledged
for the research stage conducted by A. Schena at the UCSD
laboratory and for helpful discussions. The authors thank Prof.
B. H. Robinson for assistance in the editing of the English
language.
287–304.
35 M. B. Lyles and I. L. Cameron, Biophys. Chem., 2002, 96, 53–76.
36 E. Fredericq and C. Houssier, Biopolymers, 1972, 11, 2281–2308.
37 K. George Thomas and P. V. Kamat, Acc. Chem. Res., 2003, 36, 888–
898.
38 U. H. F. Bunz and V. M. Rotello, Angew. Chem., Int. Ed., 2010, 49,
3268–3279.
39 K. Aslan and V. H. Perez-Luna, J. Fluoresc., 2004, 14, 401–405.
40 C. Ciatto, M. L. D’Amico, G. Natile, F. Secco and M. Venturini,
Biophys. J., 1999, 77, 2717–2724.
References
41 T. Biver, C. Ciatto, F. Secco and M. Venturini, Arch. Biochem. Biophys.,
2006, 452, 93–101.
1 M. Han, X. Gao, J. Z. Su and S. Nie, Nat. Biotechnol., 2001, 19, 631–
635.
42 B. Garcıa, J. M. Leal, R. Ruiz, T. Biver, F. Secco and M. Venturini,
´
2 M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray,
J. A. Rogers and R. G. Nuzzo, Chem. Rev., 2008, 108, 494–521.
3 A. K. Boal, F. Ilhan, J. E. Derouchey, T. Thurn-Albrecht, T. P. Russell
and V. M. Rotello, Nature, 2000, 404, 746–748.
4 S. K. Ghosh and T. Pal, Chem. Rev., 2007, 107, 4797–4862.
5 P. S. Ghosh, C.-K Kim, G. Han, N. S. Forbes and V. M. Rotello, ACS
Nano, 2008, 2, 2213–2218.
J. Phys. Chem. B, 2010, 114, 8555–8564.
43 C. Bazzicalupi, A. Bencini, A. Bianchi, T. Biver, A. Boggioni, S.
Bonacchi, A. Danesi, C. Giorgi, P. Gratteri, A. Marchal Ingraın, F.
Secco, C. Sissi, B. Valtancoli and M. Venturini, Chem.–Eur. J., 2008,
14, 184–196.
´
44 S. Nafisi, A. A. Saboury, N. Keramat, J. Neault and H. Tajmir-Riahi,
J. Mol. Struct., 2007, 827, 35–43.
6 J. J. Storhoff and C. A. Mirkin, Chem. Rev., 1999, 99, 1849–1862.
7 D. A. Giljohann, D. S. Seferos, W. L. Daniel, M. D. Massich, P. C. Patel
and C. A. Mirkin, Angew. Chem., Int. Ed., 2010, 49, 3280–3294.
8 A. Kanaras, F. S. Kamounah, K. Schaumburg, C. J. Kiely and M.
Brust, Chem. Commun., 2002, 2294–2295.
9 A. P. Alivisatos, K. P. Johnsson, X. Peng, T. E. Wilson, C. J. Loweth,
M. Bruchez and P. J. Schultz, Nature, 1996, 382, 609–611.
45 W. Muller and D. M. Crothers, Eur. J. Biochem., 1975, 54, 267–277.
46 W. Muller, H. Bunemann and N. Dattagupta, Eur. J. Biochem., 1975,
54, 279–291.
47 K. Song, P. Xu, Y. Meng, J. Chen, X. Yang, W. Roa, B. Kong and J.
Xing, IEEE/NIH Life Sci. Syst. Appl. Workshop, 2009, 33–35.
48 K. Y. Win and S.-S. Feng, Biomaterials, 2005, 26, 2713–2722.
49 J. Lin, H. Zhang, Z. Chen and Y. Zheng, ACS Nano, 2010, 4, 5421–5429.
This journal is
The Royal Society of Chemistry 2011
Dalton Trans., 2011, 40, 4190–4199 | 4199
©