The Journal of Organic Chemistry
Page 12 of 13
1
2
3
4
5
6
7
8
9
116, 12029-12122. (b) Pattabiraman, V. R.; Bode, J. W. Rethinking
data of all reported compounds is available as supporting
information
amide bond synthesis. Nature. 2011, 480, 471-479. (c) Valeur, E.;
Bradley, M. Amide bond formation: beyond the myth of coupling
reagents. Chem. Soc. Rev. 2009, 38, 606-631. (d) Lanigan, R. M.;
Sheppard, T. D. Recent Developments in Amide Synthesis: Direct
Amidation of Carboxylic Acids and Transamidation Reactions.
Eur. J. Org. Chem. 2013, 2013, 7453-7465.
AUTHOR INFORMATION
Corresponding Author
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(12) Sasaki, K.; Crich, D. Facile Amide Bond Formation from
ACKNOWLEDGMENT
Carboxylic Acids and Isocyanates. Org. Lett. 2011, 13, 2256-2259.
(13) (a) Raoul, J. L.; Kudo, M.; Finn, R. S; Edeline, J.; Reig, M.; Galle,
P. R. Systemic therapy for intermediate and advanced
hepatocellular carcinoma: Sorafenib and beyond. Cancer Treat.
Rev. 2018, 68, 16-24. (b) Finn, R. S. Review of Regorafenib for the
Authors acknowledged the support of THSTI for lab facility.
AK and NK acknowledge the support of DBT-BIRAC for
research fellowship under BIRAC CRS scheme,
BT/CRS0200/CRS -10/16. Authors also acknowledge the
support of GNDU Amritsar, for HRMS analysis and kind
facilitation by Prof Palwinder Singh for same.
Treatment of Hepatocellular Carcinoma. Gastroenterology
&
Hepatology. 2017, 13, 492-495. (c) Bankston, D.; Dumas, J.;
Natero, R.; Riedl, B.; Monahan, M. K.; Sibley, R. A Scaleable
Synthesis of BAY 43-9006:ꢀ A Potent Raf Kinase Inhibitor for the
Treatment of Cancer. Org. Proc. Res. Dev. 2002, 6, 777-781
REFERENCES
(14) Boström, J.; Brown, D. G.; Young, R. J.; Keserü, G. M. Expanding
the medicinal chemistry synthetic toolbox. Nat. Rev. Drug Discov.
2018, 17, 709-727.
(1) Gooßen, L. J.; Rodrguez, N.; Gooßen, K. Carboxylic Acids as
Substrates in Homogeneous Catalysis. Angew. Chem. Int. Ed. 2008,
47, 3100-3120.
(15) Diversification of
a
carboxylic acid using reported one-pot
group of various N-
conversion methodology can create
a
(2) (a) Ghosh, A. K.; Sarkar, A.; Brindisi, M. The Curtius
rearrangement: mechanistic insight and recent applications in
natural product syntheses. Org. Biomol. Chem. 2018, 16, 2006-
2027. (b) Ghosh, A. K.; Brindisi, M.; Sarkar, A. The Curtius
Rearrangement: Applications in Modern Drug Discovery and
Medicinal Chemistry. ChemMedChem. 2018, 13, 2351-2373.
containing molecules having different physico-chemical values,
which is an important parameter in drug discovery. See figure S2
as an example in supporting information.
(16) Miloserdov, F. M.; McMullin, C. L.; Belmonte, M. M.; Benet-
Buchholz, J.; Bakhmutov, V. I.; Macgregor, S. A.; Grushin, V. V.
The
Challenge
of
Palladium-Catalyzed
Aromatic
(3) (a) Curtius, T. Curtius: Hydrazide u. Azide organischer Sauren. J.
Prakt. Chem. 1894, 50, 275-294. (b). Smith, P. A. S. Organic
Reactions. R. Adams, ed.; John Wiley & Sons, Inc., New York.
1946, 3, 337-449.
Azidocarbonylation: From Mechanistic and Catalyst Deactivation
Studies to a Highly Efficient Process. Organometallics. 2014, 33,
736-752.
(17) Kumar, V.; Rana, A.; Meena, C. L.; Sharma, N.; Kumar, Y.;
Mahajan, D. Electrophilic Activation of Carboxylic Anhydrides for
Nucleophilic Acylation Reactions. Synthesis. 2018, 50, 3902-3910.
(4) Balci, M. Acyl Azides: Versatile Compounds in the Synthesis of
Various Heterocycles. Synthesis. 2018, 50, 1373–1401.
(5) Hayashi, Y. Pot economy and one-pot synthesis. Chem. Sci. 2016,
7, 866-880.
(18) Breitler, S.; Oldenhuis, N. J.; Fors, B. P.; Buchwald, S. L.
Synthesis of Unsymmetrical Diarylureas via Pd-Catalyzed C-N
Cross-Coupling Reactions. Org. Lett. 2011, 13, 3262-3265.
(6) (a) Ninomiya, K.; Shioiri, T.; Yamada, S. Phosphorus In Organic
Synthesis-VII: Diphenyl Phosphorazidate (DPPA).
Convenient Reagent For Modified Curtius Reaction.
Tetrahedron. 1974, 30, 2151-2157. (b) Shioiri, T.; Ninomiya, K.;
Yamada, S. Diphenylphosphoryl Azide. New Convenient
A New
A
(19) Tiwari, L.; Kumar, V.; Kumar, B.; Mahajan, D. A practically
simple, catalyst free and scalable synthesis of N-substituted ureas
in water. RSC Adv. 2018, 8, 21585-21595.
A
Reagent for a Modified Curtius Reaction and for the Peptide
Synthesis. J. Am. Chem. Soc. 1972, 94, 6203-6205.
(20) Kotecki, B. J.; Fernando, D. P.; Haight, A. R.; Lukin, K. A. A
General Method for the Synthesis of Unsymmetrically Substituted
Ureas via Palladium-Catalyzed Amidation. Org. Lett. 2009, 11,
947-950.
(7) Wolff, O.; Waldvogel, S. R. Reliable Protocol for the Large Scale
Synthesis of Diphenylphosphoryl Azide (DPPA). Synthesis, 2004,
8, 1303-1305.
(8) (a) Lebel, H.; Leogane, O. Boc-Protected Amines via a Mild and
Efficient One-Pot Curtius Rearrangement. Org. Lett. 2005, 7,
4107-4110. (b) Lebel, H.; Leogane, O. Curtius Rearrangement of
Aromatic Carboxylic Acids to Access Protected Anilines and
Aromatic Ureas. Org. Lett. 2006, 8, 5717-5720.
(21) Gavade, S. N.; Balaskar, R. S.; Mane, M. S.; Pabrekar, P. N.;
Shingare, M. S.; Mane, D. V. An efficient method for the N-
arylation of phenylurea via copper catalyzed amidation. Chin.
Chem. Lett. 2011, 22, 675-678.
(9) Tiwari, L.; Kumar, V.; Kumar, B.; Mahajan, D. A practically
simple, catalyst free and scalable synthesis of N-substituted ureas
in water. RSC Adv. 2018, 8, 21585-21595.
(22) Khan, K. M.; Saeed, S.; Ali, M.; Gohar, M.; Zahid, J.; Khan, A.;
Perveen, S.; Choudhary, M. I. Unsymmetrically disubstituted urea
derivatives: A potent class of antiglycating agents. Bioorg. Med.
Chem. 2009, 17, 2447-2451.
(10) (a) Brown, D. G.; Boström, J. Analysis of Past and Present
Synthetic Methodologies on Medicinal Chemistry: Where Have All
the New Reactions Gone?. J. Med. Chem. 2016, 59, 4443-4458. (b)
Dunetz, J. R.; Magano, J.; Weisenburger, G. A. Large-Scale
Applications of Amide Coupling Reagents for the Synthesis of
Pharmaceuticals. Org. Process Res. Dev. 2016, 20, 140-177.
(23) Avdeenko, A. P.; Konovalova, S. A.; Sergeeva, A. G.; Zubatyuk,
R. I.; Palamarchuk, G. V.; Shishkin, O. V. Synthesis and Structure
of N-Alkyl(aryl)aminocarbonyl-1,4-benzoquinone Imines. Russ. J.
Org. Chem. 2008, 44, 1765-1772.
(24) Ricci, A.; Carra, A.; Torelli, A.; Maggiali, C. A.; Morini, G.;
Branca, C. Cytokinin-like activity of N,N’-diphenylureas. N,N’-
(11) (a) Figueiredo, R. M. d.; Suppo, J. S.; Campagne, J. M.
Nonclassical Routes for Amide Bond Formation. Chem. Rev. 2016,
bis-(2,3-methylenedioxyphenyl)urea
and
N,N’-bis-(3,4-
ACS Paragon Plus Environment
12