1686
D. N. Deaton et al. / Bioorg. Med. Chem. Lett. 18 (2008) 1681–1687
Acknowledgments
The authors thank Andrea Epperly, Chuck Poole, and
Jo Salisbury for the pharmacokinetic studies.
Supplementary data
Supplementary data associated with this article can be
References and notes
1. Donoghue, M.; Hsieh, F.; Baronas, E.; Godbout, K.;
Gosselin, M.; Stagliano, N.; Donovan, M.; Woolf, B.;
Robison, K.; Jeyaseelan, R.; Breitbart, R. E.; Acton, S.
Circ. Res. 2000, 87, e1.
2. Tipnis, S. R.; Hooper, N. M.; Hyde, R.; Karran, E.;
Christie, G.; Turner, A. J. J. Biol. Chem. 2000, 275, 33238.
3. Danilczyk, U.; Penninger, J. M. Circ. Res. 2006, 98, 463.
4. Kuba, K.; Imai, Y.; Penninger, J. M. Curr. Opin. Pharm.
2006, 6, 271.
Figure 2. A comparison of the models of the thiol compounds 1j
(carbons colored in green) and 1r (carbons colored in magenta) bound
to the active site of ACE2 (carbons colored in cyan) based on the X-ray
co-crystal structure (PDB code 1R4L). The semi-transparent gray
surface represents the molecular surface, while hydrogen bonds are
depicted as yellow dashed lines. Several residues were removed for
visual clarity. This figure was generated using PYMOL version 1.00.
5. Tallant, E. A.; Ferrario, C. M.; Gallagher, P. E. Future
Cardiol. 2006, 2, 335.
409Ser, 370Leu, 371Thr, 276Thr and extending over to
441Lys and 442Gln. Although several residues in this
pocket are hydrophilic, most of the polar groups are
6. Crackower, M. A.; Sarao, R.; Oudit, G. Y.; Yagil, C.;
Kozieradzki, I.; Scanga, S. E.; Oliveira-dos-Santos, A. J.;
da Costa, J.; Zhang, L.; Pei, Y.; Scholey, J.; Ferrario, C.
M.; Manoukian, A. S.; Chappell, M. C.; Backx, P. H.;
Yagil, Y.; Penninger, J. M. Nature 2002, 417, 822.
7. Gurley, S. B.; Allred, A.; Le, T. H.; Griffiths, R.; Mao, L.;
Philip, N.; Haystead, T. A.; Donoghue, M.; Breitbart, R.
E.; Acton, S. L.; Rockman, H. A.; Coffman, T. M. J. Clin.
Invest. 2006, 116, 2218.
8. Yamamoto, K.; Ohishi, M.; Katsuya, T.; Ito, N.; Ikushi-
ma, M.; Kaibe, M.; Tatara, Y.; Shiota, A.; Sugano, S.;
Takeda, S.; Rakugi, H.; Ogihara, T. Hypertension 2006,
47, 718.
9. Oudit, G. Y.; Herzenberg, A. M.; Kassiri, Z.; Wong, D.;
Reich, H.; Khokha, R.; Crackower, M. A.; Backx, P. H.;
Penninger, J. M.; Scholey, J. W. Am. J. Pathol. 2006, 168,
1808.
10. Acton, S. L.; Ocain, T. D.; Gould, A. E.; Dales, N. A.;
Guan, B.; Brown, J. A.; Patane, M.; Kadambi, V. J.;
Solomon, M.; Stricker-Krongrad, A. PCT Int. Appl. WO
039997, 2002; Chem. Abstr. 2002, 136, 402027.
11. Li, W.; Moore, M. J.; Vasilieva, N.; Sui, J.; Wong, S. K.;
Berne, M. A.; Somasundaran, M.; Sullivan, J. L.; Luzuri-
aga, K.; Greenough, T. C.; Choe, H.; Farzan, M. Nature
2003, 426, 450.
either involved in hydrogen bonds with other enzyme
0
residues or oriented away from the S1 pocket, maintain-
ing the lipophilic nature of this subsite. Based on this
0
model, the 3,4-difluorobenzyl portion of the P1 substitu-
ent is hypothesized to oc0cupy a different part of this
large pocket than the P1 side chain of the carboxyl
inhibitor MLN-4760 co-crystallized in 1R4L.
In contrast, as shown in Figure 2, a model21,22 of the
thiol 1j docked into 0the active site of ACE2 revealed that
the o-phenyloxy P1 group occupies a different part of
0
the S1 subsite than the 3,4-difluorobenzyl substituent
0
of analog 1r. The o-phenyloxy P1 moiety fits into a por-
0
tion of the S1 subsite composed of 360Met, 346Pro,
362Thr, 271Trp, 368Asp, 371Thr, 127Tyr, 144Leu, 149Asn,
363Lys, and 269Asp, and the disulfide pair of 344Cys
0
and 361Cys. Thus, the o-phenyloxy P1 moiety of 1j binds
0
similarly to the P1 side chain of the Millennium car-
boxyl inhibitor MLN-4760 co-crystallized in 1R4L.
The other interactions of inhibitor 1j are similar to those
for analog 10r. Thus, these two models help explain the
12. Kuba, K.; Imai, Y.; Rao, S.; Gao, H.; Guo, F.; Guan, B.;
Huan, Y.; Yang, P.; Zhang, Y.; Deng, W.; Bao, L.; Zhang,
B.; Liu, G.; Wang, Z.; Chappell, M.; Liu, Y.; Zheng, D.;
Leibbrandt, A.; Wada, T.; Slutsky, A. S.; Liu, D.; Qin, C.;
Jiang, C.; Penninger, J. M. Nat. Med. 2005, 11, 875.
13. Hamming, I.; Cooper, M. E.; Haagmans, B. L.; Hooper,
N. M.; Korstanje, R.; Osterhaus, A. D. M. E.; Timens,
W.; Tumer, A. J.; Navis, G.; van Goor, H. J. Pathol. 2007,
212, 1.
14. Dales, N. A.; Gould, A. E.; Brown, J. A.; Calderwood, E.
F.; Guan, B.; Minor, C. A.; Gavin, J. M.; Hales, P.;
Kaushik, V. K.; Stewart, M.; Tummino, P. J.; Vickers, C.
S.; Ocain, T. D.; Patane, M. A. J. Am. Chem. Soc. 2002,
124, 11852.
0
divergent P1 SAR, since the very large, forked S1 sub-
site can tolerate substituents with different branching
points.
0
In summary, variation of substituents at the P1 position
in a series of a-thiol amide-based inhibitors of ACE2 re-
sulted in the discovery of potent inhibitors with good
ACE and NEP selectivity. Inhibitors containing p-meth-
0
ylene aryl tyrosine P1 moieties like 1o, 1p, and 1r were
some of the more selective ACE2 inhibitors. In addition,
o-phenyloxy phenylalanine analog 1j was also a potent
and selective ACE2 inhibitor. These analogs may prove
useful in further defining the roles ACE2 plays in the
RAS cascade.
15. Huang, L.; Sexton, D. J.; Skogerson, K.; Devlin, M.;
Smith, R.; Sanyal, I.; Parry, T.; Kent, R.; Enright, J.; Wu,