Journal of the American Chemical Society
Communication
the density of 2.7 × 1014 molecules/cm2 of the C11 chain on the
surface,35 the occupied area of the single molecule is calculated to
be 0.37 nm2. The height of the C11 monolayer is about 2.0 nm,31
so the volume of the cylinder is 0.74 nm3 or 445 cm3 mol−1.
Calculations indicate that, when two anti conformers in the
middle of the alkane chain are changed to gauche in the reaction,
the height of the C11 monolayer decreases to 1.2 nm.31 This will
result in a Δh (Figure 4c) of −0.8 nm, leading to an ΔVm of
−0.30 nm3 or −178 cm3 mol−1. According to this model, the
computed ΔVm values for the C8, C6, C5, and C3 monolayers
are −156, −134, −111, and −78 cm3 mol−1, respectively,31 and
these data reproduce the trend observed in the experiments
(Table 1). The largest discrepancy between experimental and
computational values occurs with the C3 monolayers, which are
more likely to lie flat on the substrate and are therefore less
compressible along the force vector than the closely packed
monolayers used for computations.
(9) Hickenboth, C. R.; Moore, J. S.; White, S. R.; Sottos, N. R.; Baudry,
J.; Wilson, S. R. Nature 2007, 446, 423.
(10) Larsen, M. B.; Boydston, A. J. J. Am. Chem. Soc. 2013, 135, 8189.
(11) Kersey, F. R.; Yount, W. C.; Craig, S. L. J. Am. Chem. Soc. 2006,
128, 3886.
(12) Black, A. L.; Orlicki, J. A.; Craig, S. L. J. Mater. Chem. 2011, 21,
8460.
(13) Todres, Z. V. Organic Mechanochemistry and Its Practical
Applications; CRC Press: Boca Raton, FL, 2006.
(14) Fanselow, D. L.; Drickamer, H. G. J. Chem. Phys. 1974, 61, 4567.
(15) Wilson, D. G.; Drickamer, H. G. J. Chem. Phys. 1975, 63, 3649.
(16) Kawamura, I.; Degawa, Y.; Yamaguchi, S.; Nishimura, K.; Tuzi, S.;
Saito, H.; Naito, A. Photochem. Photobiol. 2007, 83, 346.
(17) Tabata, M.; Tanaka, Y.; Sadahiro, Y.; Sone, T.; Yokota, K.; Miura,
I. Macromolecules 1997, 30, 5200.
(18) Bian, S. D.; Scott, A. M.; Cao, Y.; Liang, Y.; Osuna, S.; Houk, K.
N.; Braunschweig, A. B. J. Am. Chem. Soc. 2013, 135, 9240.
(19) Paxton, W. F.; Spruell, J. M.; Stoddart, J. F. J. Am. Chem. Soc. 2009,
131, 6692.
In conclusion, we have used massively parallel tip arrays to
form nanoreactors that can apply force to accelerate bond-
forming reactions with negative V⧧ on surfaces. This approach
was used to show that the velocity of the Huisgen reaction on
surfaces is sensitively dependent on force and monolayer chain
length, and a semiquantitative model was developed that explains
the previous contradictory results in the literature. Force may
have an important role in many interfacial processes, and the
approach described in this work can be used to address
challenges in materials science, biology, and nanotechnology.
(20) Stottinger, S.; Hinze, G.; Diezemann, G.; Oesterling, I.; Mullen,
K.; Basche, T. Nat. Nanotechnol. 2014, 9, 182.
(21) Brantley, J. N.; Bailey, C. B.; Wiggins, K. M.; Keatinge-Clayth, A.
T.; Bielawski, C. W. Polym. Chem. 2013, 4, 3916.
(22) Lantz, M. A.; Hug, H. J.; Hoffmann, R.; van Schendel, P. J. A.;
Kappenberger, P.; Martin, S.; Baratoff, A.; Guntherodt, H. J. Science
2001, 291, 2580.
(23) Mehlich, J.; Ravoo, B. J. Org. Biomol. Chem. 2011, 9, 4108.
(24) Spruell, J. M.; Sheriff, B. A.; Rozkiewicz, D. I.; Dichtel, W. R.;
Rohde, R. D.; Reinhoudt, D. N.; Stoddart, J. F.; Heath, J. R. Angew.
Chem., Int. Ed. 2008, 47, 9927.
(25) Rozkiewicz, D. I.; Janczewski, D.; Verboom, W.; Ravoo, B. J.;
Reinhoudt, D. N. Angew. Chem., Int. Ed. 2006, 45, 5292.
(26) Huo, F. W.; Zheng, Z. J.; Zheng, G. F.; Giam, L. R.; Zhang, H.;
Mirkin, C. A. Science 2008, 321, 1658.
(27) Eichelsdoerfer, D. J.; Liao, X.; Cabezas, M. D.; Morris, W.; Radha,
B.; Brown, K. A.; Giam, L. R.; Braunschweig, A. B.; Mirkin, C. A. Nat.
Protoc. 2013, 8, 2548.
(28) Giam, L. R.; Mirkin, C. A. Angew. Chem., Int. Ed. 2011, 50, 7482.
(29) Braunschweig, A. B.; Huo, F. W.; Mirkin, C. A. Nat. Chem. 2009,
1, 353.
ASSOCIATED CONTENT
* Supporting Information
Experimental details and computational data. This material is
■
S
AUTHOR INFORMATION
Corresponding Author
■
(30) Huang, L.; Braunschweig, A. B.; Shim, W.; Qin, L. D.; Lim, J. K.;
Hurst, S. J.; Huo, F. W.; Xue, C.; Jong, J. W.; Mirkin, C. A. Small 2010, 6,
1077.
Notes
The authors declare no competing financial interest.
(31) See Supporting Information for details.
(32) Bian, S. D.; He, J. J.; Schesing, K. B.; Braunschweig, A. B. Small
2012, 8, 2000.
(33) Liao, X.; Braunschweig, A. B.; Zheng, Z. J.; Mirkin, C. A. Small
2010, 6, 1082.
(34) Liao, X.; Braunschweig, A. B.; Mirkin, C. A. Nano Lett. 2010, 10,
1335.
(35) Chidsey, C. E. D.; Bertozzi, C. R.; Putvinski, T. M.; Mujsce, A. M.
J. Am. Chem. Soc. 1990, 112, 4301.
(36) Vericat, C.; Vela, M. E.; Benitez, G.; Carro, P.; Salvarezza, R. C.
Chem. Soc. Rev. 2010, 39, 1805.
(37) Pellow, M. A.; Stack, T. D. P.; Chidsey, E. D. C. Langmuir 2013,
ACKNOWLEDGMENTS
■
A.B.B. is grateful to the Air Force Office of Scientific Research
(Young Investigator Award FA9550-13-1-0188) and the Na-
tional Science Foundation (DBI-1340038), and K.N.H. is
grateful to the National Science Foundation (CHE-1059084)
for financial support. Calculations were performed on the
Extreme Science and Engineering Discovery Environment
(XSEDE), which is supported by the NSF (OCI-1053575).
REFERENCES
■
(1) Kuster, C. J. T.; Scheeren, H. W. In High Pressure Chemistry; van
Eldik, R., Klaerner, F.-G., Eds.; Wiley-VCH: Weinheim, 2007; pp 284−
304.
29, 5383.
(38) Jezowski, S. R.; Zhu, L. Y.; Wang, Y. B.; Rice, A. P.; Scott, G. W.;
Bardeen, C. J.; Chronister, E. L. J. Am. Chem. Soc. 2012, 134, 7459.
(2) Blandamer, M. J.; Burgess, J.; Robertson, R. E.; Scott, J. M. W.
Chem. Rev. 1982, 82, 259.
(3) Ribas-Arino, J.; Marx, D. Chem. Rev. 2012, 112, 5412.
(4) Beyer, M. K.; Clausen-Schaumann, H. Chem. Rev. 2005, 105, 2921.
(5) Wiggins, K. M.; Brantley, J. N.; Bielawski, C. W. Chem. Soc. Rev.
2013, 42, 7130.
(6) Caruso, M. M.; Davis, D. A.; Shen, Q.; Odom, S. A.; Sottos, N. R.;
White, S. R.; Moore, J. S. Chem. Rev. 2009, 109, 5755.
(7) Brantley, J. N.; Wiggins, K. M.; Bielawski, C. W. Science 2011, 333,
1606.
(8) Lenhardt, J. M.; Ong, M. T.; Choe, R.; Evenhuis, C. R.; Martinez, T.
J.; Craig, S. L. Science 2010, 329, 1057.
10556
dx.doi.org/10.1021/ja504137u | J. Am. Chem. Soc. 2014, 136, 10553−10556