C O M M U N I C A T I O N S
Carbonyl allylation can also be achieved from the aldehyde oxidation
level employing isopropanol or formic acid as terminal reductant,
although increased loadings of diene are required. For example, under
standard conditions, aldehydes 7a-9a couple to isoprene to furnish
products of carbonyl allylation 1c-3c, respectively, in good to excellent
yield. Thus, carbonyl allylation from the alcohol or aldehyde oxidation
level is possible (Table 2).
References
(1) For selected reviews of ruthenium-catalyzed transfer hydrogenation, see:
(a) Zassinovich, G.; Mestroni, G.; Gladiali, S. Chem. ReV. 1992, 92, 1051.
(b) Noyori, R.; Hashiguchi, S. Acc. Chem. Res. 1997, 30, 97. (c) Noyori,
R.; Yamakawa, M.; Hashiguchi, S. J. Org. Chem. 2001, 66, 7031. (d)
Noyori, R.; Ohkuma, T. Angew. Chem., Int. Ed. 2001, 40, 40. (e) Noyori,
R. Angew. Chem., Int. Ed. 2002, 41, 2008. (f) Noyori, R. AdV. Synth. Catal.
2003, 345, 15. (g) Munˇiz, K. Angew. Chem., Int. Ed. 2005, 44, 6622. (h)
Noyori, R. Chem. Commun. 2005, 1807. (i) Gladiali, S.; Alberico, E. Chem.
Soc. ReV. 2006, 35, 226. (j) Ikariya, T.; Murata, K.; Noyori, R. Org. Biomol.
Chem. 2006, 4, 393. (k) Ikariya, T.; Blacker, A. J. Acc. Chem. Res. 2007,
40, 1300.
Table 2. Coupling of Isoprene to Representative Aldehydes under
Conditions of Ruthenium-Catalyzed Transfer Hydrogenationa
(2) For a review of ruthenium-catalyzed alkene hydroformylation, see: Kalck,
P.; Peres, Y.; Jenck, J. AdV. Organomet. Chem. 1991, 32, 121.
(3) For ruthenium-catalyzed reductive C-C bond formations beyond alkene
hydroformylation, see: (a) Tsuji, Y.; Mukai, T.; Kondo, T.; Watanabe, Y.
J. Organomet. Chem. 1989, 369, C51. (b) Kondo, T.; Ono, H.; Satake, N.;
Mitsudo, T.-a; Watanabe, Y. Organometallics 1995, 14, 1945. (c) Yu, C.-
M.; Lee, S.; Hong, Y.-T.; Yoon, S.-K. Tetrahedron Lett. 2004, 45, 6557.
(4) For selected reviews of ruthenium-catalyzed C-C coupling, see: (a) Trost,
B. M.; Toste, F. D.; Pinkerton, A. B. Chem. ReV. 2001, 101, 2067. (b)
Kondo, T.; Mitsudo, T.-a. Curr. Org. Chem. 2002, 6, 1163. (c) De´rien, S.;
Monnier, F.; Dixneuf, P. H. Top. Organomet. Chem. 2004, 11, 1.
(5) For selected reviews of hydrogenative C-C coupling, see: (a) Ngai, M.-
Y.; Kong, J.-R.; Krische, M. J. J. Org. Chem. 2007, 72, 1063. (b) Iida, H.;
Krische, M. J. Top. Curr. Chem. 2007, 279, 77. (c) Skucas, E.; Ngai, M.-
Y.; Komanduri, V.; Krische, M. J. Acc. Chem. Res. 2007, 40, 1394.
a See Table 1 footnotes for details. m-NO2BzOH and acetone were
not employed as additives.
(6) For recent examples, see: CdX vinylation: (a) Kong, J.-R.; Ngai, M.-Y.;
Krische, M. J. J. Am. Chem. Soc. 2006, 128, 718. (b) Skucas, E.; Kong,
J.-R.; Krische, M. J. J. Am. Chem. Soc. 2007, 129, 7242. (c) Barchuk, A.;
Ngai, M.-Y.; Krische, M. J. J. Am. Chem. Soc. 2007, 129, 8432. (d)
Barchuk, A.; Ngai, M.-Y.; Krische, M. J. J. Am. Chem. Soc. 2007, 129,
12644. Aldol and Mannich addition: (d) Jung, C.-K.; Garner, S. A.; Krische,
M. J. Org. Lett. 2006, 8, 519. (e) Jung, C.-K.; Krische, M. J. J. Am. Chem.
Soc. 2006, 128, 17051. (f) Garner, S. A.; Krische, M. J. J. Org. Chem.
2007, 72, 5843. (g) Bee, C.; Iida, H.; Han, S. B.; Hassan, A.; Krische,
M. J. J. Am. Chem. Soc. 2008, 130, 2747. CdO Allylation: (h) Skucas, E.;
Bower, J. F.; Krische, M. J. J. Am. Chem. Soc. 2007, 129, 12678.
(7) (a) Bower, J. F.; Skucas, E.; Patman, R. L.; Krische, M. J. J. Am. Chem.
Soc. 2007, 129, 15134. (b) Bower, J. F.; Patman, R. L.; Krische, M. J.
Org. Lett. 2008, 10, 1033.
(8) For reviews of hydrogen autotransfer, see: (a) Guillena, G.; Ramo´n, D. J.;
Yus, M. Angew. Chem., Int. Ed. 2007, 46, 2358. (b) Hamid, M. H. S. A.;
Slatford, P. A.; Williams, J. M. J. AdV. Synth. Catal. 2007, 349, 1555.
(9) For examples of C-C coupling that proceed by way of C-C bond forming
redox isomerization, see: (a) Herath, A.; Li, W.; Montgomery, J. J. Am.
Chem. Soc. 2008, 130, 469. (b) Herzon, S. B.; Hartwig, J. F J. Am. Chem.
Soc. 2007, 129, 6690. and references cited therein.
(10) Catalytic intermolecular diene-aldehyde reductive coupling: (a) Kimura,
M.; Ezoe, A.; Shibata, K.; Tamaru, Y. J. Am. Chem. Soc. 1998, 120, 4033.
(b) Takimoto, M.; Hiraga, Y.; Sato, Y.; Mori, M. Tetrahedron Lett. 1998,
39, 4543. (c) Kimura, M.; Fujimatsu, H.; Ezoe, A.; Shibata, K.; Shimizu,
M.; Matsumoto, S.; Tamaru, Y. Angew. Chem., Int. Ed. 1999, 38, 397. (d)
Kimura, M.; Shibata, K.; Koudahashi, Y.; Tamaru, Y. Tetrahedron Lett.
2000, 41, 6789. (e) Kimura, M.; Ezoe, A.; Tanaka, S.; Tamaru, Y. Angew.
Chem., Int. Ed. 2001, 40, 3600. (f) Loh, T.-P.; Song, H.-Y.; Zhou, Y. Org.
Lett. 2002, 4, 2715. (g) Sato, Y.; Sawaki, R.; Saito, N.; Mori, M. J. Org.
Chem. 2002, 67, 656. (h) Jang, H.-Y.; Huddleston, R. R.; Krische, M. J.
Angew. Chem., Int. Ed. 2003, 42, 4074. (i) Bareille, L.; Le Gendre, P.;
Mo¨ıse, C. Chem. Commun. 2005, 775. (j) Kimura, M.; Ezoe, A.; Mori,
M.; Iwata, K.; Tamaru, Y. J. Am. Chem. Soc. 2006, 128, 8559. (k) Yang,
Y.; Zhu, S.-F.; Duan, H.-F.; Zhou, C.-Y.; Wang, L.-X.; Zhou, Q.-L. J. Am.
Chem. Soc. 2007, 129, 2248. (l) Sato, Y.; Hinata, Y.; Seki, R.; Oonishi,
Y.; Saito, N. Org. Lett. 2007, 9, 5597.
A plausible mechanism involves alcohol dehydrogenation to gener-
ate a ruthenium hydride, which hydrometalates the less substituted
olefin of isoprene to deliver the secondary σ-allyl metal haptomer.
Carbonyl addition from the more stable primary σ-allyl haptomer
through a six-centered transition structure accounts for branched
regioselectivity. Consistent with this interpretation, coupling of isoprene
to deuterio-2a provides deuterio-2c, with deuterium at the benzylic
position (>95%), the allylic methyl (32%), and the allylic methine
(14%). Coupling of isoprene to aldehyde 8a using isopropanol-d8 as
terminal reductant provides deuterio-2c′, which incorporates deuterium
at the allylic methyl (19%) and the allylic methine (10%). Incomplete
deuterium incorporation likely stems from reversible hydrometalation
of isoprene. Mechanisms involving reversible diene hydrometalation
in advance of diene-aldehyde oxidative coupling cannot be excluded
on the basis of available data.
In summary, we report the first C-C couplings under the conditions
of ruthenium-catalyzed transfer hydrogenation employing alcohols as
terminal reductants. For such transfer hydrogenative couplings, hy-
drogen embedded within isopropanol or an alcohol substrate is
redistributed among reactants to generate nucleophile-electrophile
pairs, enabling carbonyl addition from the aldehyde or alcohol oxidation
level. Stereoselective variants of these and other alcohol-unsaturate
couplings are currently under investigation.
Acknowledgment is made to Johnson & Johnson, Merck, the
Welch Foundation, the ACS-GCI, the NIH-NIGMS (RO1-GM069445)
and the Donald D. Harrington Faculty Fellows Program for partial
support of this research.
(11) For reviews encompassing nickel-catalyzed diene-aldehyde reductive
coupling, see: (a) Tamaru, Y. J. Organomet. Chem. 1999, 576, 215. (b)
Ikeda, S.-i. Angew. Chem., Int. Ed. 2003, 42, 5120. (c) Montgomery, J.
Angew. Chem., Int. Ed. 2004, 43, 3890. (d) Modern Organo Nickel
Chemistry; Tamaru, Y., Ed.; Wiley-VCH: Weinheim, Germany, 2005. (e)
Kimuara, M.; Tamaru, Y. Top. Curr. Chem. 2007, 279, 173.
(12) For ruthenium-catalyzed hydroacylation of 1,3-dienes empolying aldehydes
as acyl donors, see: Mitsudo, T.-a.; Kondo, T.; Hiraishi, N.; Morisaki, Y.;
Wada, K.; Watanabe, Y. Organometallics 1998, 17, 2131.
(13) Carbonyl allylation via ene-type reaction typically requires highly activated
aldehydes: (a) Mikami, K.; Shimizu, M. Chem. ReV. 1992, 92, 1021. (b)
Berrisford, D. J.; Bolm, C. Angew. Chem., Int. Ed. Engl. 1995, 34, 1717.
(c) Johnson, J. S.; Evans, D. A. Acc. Chem. Res. 2000, 33, 325.
(14) Carbonylallylationemployingallylicacetatesrequiresmetallicreductants:Tamaru,
Y. In Handbook of Organopalladium Chemistry for Organic Synthesis;
Negishi, E.-i., Ed.; Wiley-Interscience: New York, 2002; Vol. 2, p 1917.
Also, see ref 4b.
(15) RuHCl(CO)(L)3 (L ) (p-MeOPh)3P) is not an efficient catalyst, suggesting
Supporting Information Available: Experimental procedures and
spectral data for new compounds. This material is available free of charge
the active catalyst is ligated to both Ph3P and (p-MeOPh)3P.
JA801213X
9
J. AM. CHEM. SOC. VOL. 130, NO. 20, 2008 6339