in the deactivation of catalysts by sulfur-containing com-
pounds owing to their strong coordination and absorption
properties with transition metals. Hence, exploring new
strategies to circumvent these drawbacks is still a highly
desirable goal.
synthesize 1,4-benzothiazepin-5-ones from readily accessible
N-tosyl aziridines and o-iodothiophenols.
Initially, the reaction of 2-iodothiophenol (1a) with the
N-tosyl aziridine of cyclohexene (2a) was selected as the model
reaction to investigate the feasibility and efficiency of the new
domino protocol (Table 1). Under 500 psi of CO in the presence
Domino reactions are emerging as one of most efficient
and powerful tools in generating complex molecular archi-
tectures from readily available intermediates.17 This strategy
is characterized by the concomitant formation of multiple
new bonds in a single operation, which can minimize the
amount of requisite regents, separation processes, chemical
waste, energy, time, and cost. Our research focuses on the
pursuit of highly efficient and environmentally benign
protocols for the synthesis of carbonyl-containing compounds
via carbonylation reactions. Recently, we described new
domino approaches for the synthesis of quinazolino[3,2-a]-
quinazolinones,18 quinazolin-4(3H)-ones,19 isoquinolin-
ones,20 1,4-benzo- or pyrido-oxazepinones,21 2-acetyl-3,4-
dihydronaphthalenones,22 and 2-carboxyindoles.23 Herein, we
report a highly novel and efficient domino strategy to
Table 1. Optimization of the Reaction Conditions Using
2-Iodothiophenol with 7-Tosyl-7-azabicyclo[4.1.0]heptanea
entry ligand (L/[Pd]) solvent
base
3a (%)b 3a′ (%)b
1
2
3
4
5
6
7
8
dppf (1.0)
THF
Et3N
Et3N
Et3N
Et3N
Et3N
Et3N
Et3N
Et3N
Et3N
Et3N
trace
41
n.d.
36
41
83
67
93
80
80
67
n.d.
69
xantphos (1.0) THF
xantphos (2.0) THF
xantphos (1.0) THF
(()-binap (1.0) THF
tracec
n.d.
n.d.
18
dppb (1.0)
THF
Johnphos (2.0) THF
Johnphos (1.0) THF
Johnphos (1.0) THF
Johnphos (1.0) THF
(9) (a) Fu, C. F.; Liu, Y. H.; Peng, S.-M.; Liu, S.-T. Tetrahedron 2010,
66, 2119. (b) Ferna´ndez-Rodr´ıguez, M. A.; Hartwig, J. F. Chem.sEur. J.
2010, 16, 2355. (c) Bryan, C.; Braunger, J. A.; Lautens, M. Angew. Chem.,
Int. Ed. 2009, 48, 7064. (d) Lee, J.-Y.; Lee, P. H. J. Org. Chem. 2008, 73,
7413. (e) Ferna´ndez-Rodr´ıguez, M. A.; Shen, Q.; Hartwig, J. F. J. Am. Chem.
Soc. 2006, 128, 2180. (f) Itoh, T.; Mase, T. Org. Lett. 2004, 6, 4587. (g)
Alvaro, E.; Hartwig, J. F. J. Am. Chem. Soc. 2009, 131, 7858.
(10) (a) Jammi, S.; Barua, P.; Rout, L.; Saha, P.; Punniyamurthy, T.
Tetrahedron Lett. 2008, 49, 1484. (b) Zhang, Y.; Ngeow, K. C.; Ying, J. Y.
Org. Lett. 2007, 9, 3495. (c) Cristau, H. J.; Chabaud, B.; Chene, A.; Christol,
H. Synthesis 1981, 892.
n.d.
traced
16e
n.d.
n.d.
trace
n.d.
n.d.
9
10
11
12
13
14
15
Johnphos (1.0) CH3CN Et3N
85
88
20
89
Johnphos (1.0) PhMe
Johnphos (1.0) THF
Johnphos (1.0) THF
Et3N
Cs2CO3
K2CO3
Johnphos (1.0) dioxane K2CO3
93
a All reactions were carried out with 0.5 mmol of 1a, 0.55 mmol of 2a,
0.02 mmol of Pd(OAc)2, 3.0 equiv of base, 6 mL of solvent, 500 psi of
CO, 100 °C, 17 h. b Isolated yield based on 2-iodothiophenol. c [Pd] )
(11) (a) Ma, D.; Xie, S.; Xue, P.; Zhang, X.; Dong, J.; Jiang, Y. Angew.
Chem., Int. Ed. 2009, 48, 4222. (b) Carril, M.; SanMartin, R.; Dom´ınguez,
E.; Tellitu, I. Chem.sEur. J. 2007, 13, 5100. (c) Verma, A. K.; Singh, J.;
Chaudhary, R. Tetrahedron Lett. 2007, 48, 7199. (d) Lv, X.; Bao, W. J.
Org. Chem. 2007, 72, 3863. (e) Bates, C. G.; Gujadhur, R. K.; Venkatara-
man, D. Org. Lett. 2002, 4, 2803. (f) Kwong, F. Y.; Buchwald, S. L. Org.
Lett. 2002, 4, 3517. (g) Kabir, M. S.; Lorenz, M.; Van Linn, M. L.;
Namjoshi, O. A.; Ara, S.; Cook, J. M. J. Org. Chem. 2010, 75, 3626. (h)
Firouzabadi, H.; Iranpoor, N.; Gholinejada, M. AdV. Synth. Catal. 2010,
352, 119. (i) Chen, C.-K.; Chen, Y.-W.; Lin, C.-H.; Lin, H.-P.; Lee, C.-F.
Chem. Commun. 2010, 282. (j) Jiang, Y.; Qin, Y.; Xie, S.; Zhang, X.; Dong,
J.; Ma, D. Org. Lett. 2009, 11, 5250. (k) Bhadra, S.; Sreedhar, B.; Ranu,
B. C. AdV. Synth. Catal. 2009, 351, 2369. (l) Zhao, Q.; Li, L.; Fang, Y.;
Sun, D.; Li, C. J. Org. Chem. 2009, 74, 459. (m) Kabir, M. S.; Van Linn,
M. L.; Monte, A.; Cook, J. M. Org. Lett. 2008, 10, 3363. (n) Sperotto, E.;
van Klink, G. P. M.; de Vries, J. G.; van Koten, G. J. Org. Chem. 2008,
73, 5625. (o) Rout, L.; Sen, T. K.; Punniyamurthy, T. Angew. Chem., Int.
Ed. 2007, 46, 5583. (p) Gan, J.; Ma, D. Org. Lett. 2009, 11, 2788.
(12) Wong, Y.-C.; Jayanth, T. T.; Cheng, C.-H. Org. Lett. 2006, 8, 5613.
(13) (a) Reddy, V. P.; Kumar, A. V.; Swapna, K.; Rao, K. R. Org. Lett.
2009, 11, 1697. (b) Reddy, V. P.; Swapna, K.; Kumar, A. V.; Rao, K. R.
J. Org. Chem. 2009, 74, 3189.
d
Pd2(dba)3·CHCl3. PCO ) 300 psi. e [Pd] ) 0.01 mmol of Pd(OAc)2.
of 3.0 equiv of Et3N, 4 mol % of Pd(OAc)2, and dppf, at 100
°C for 17 h, the reaction gave only trace amounts of the desired
product 3a, forming the ring-opening product 3a′ in 67%
isolated yield (Table 1, entry 1). When xantphos, (()-binap,
and dppb were employed as ligands instead of dppf, the desired
1,4-thiazepinone 3a was isolated in 41%, 41%, and 83% yield,
respectively (Table 1, entries 2, 5, and 6). We were pleased to
observe that performing the same reaction but using (2-
biphenyl)di-tert-butylphosphine (Johnphos) as the ligand in-
creased the yield of 3a to 93% (Table 1, entry 8). It is
noteworthy that using 2.0 equiv of phosphine ligands, i.e.,
xantphos, afforded the intermediate 3a′ as the main product,
which reveals that the ligand/catalyst ratios play a key role in
this process (Table 1, entry 3). Running the reaction at lower
loading of palladium precursors or at lower pressure of carbon
monoxide hampered the reaction efficiency (Table 1, entries 9
and 10). Surprisingly, the inorganic base, Cs2CO3, is inferior
to other bases, such as K2CO3 and Et3N (Table 1, entry 13).
(14) Weiss, C. J.; Marks, T. J. J. Am. Chem. Soc. 2010, 132, 10533.
(15) Cao, C.; Fraser, L. R.; Love, J. A. J. Am. Chem. Soc. 2005, 127,
17614.
(16) (a) Correa, A.; Carril, M.; Bolm, C. Angew. Chem., Int. Ed. 2008,
47, 2880. (b) Qiu, J.-W.; Zhang, X.-G.; Tang, R.-Y.; Zhong, P.; Lia, J.-H.
AdV. Synth. Catal. 2009, 351, 2319. (c) Wu, J.-R.; Lin, C.-H.; Lee, C.-F.
Chem. Commun. 2009, 4450. (d) Wu, W.-Y.; Wang, J.-C.; Tsai, F.-Y. Green
Chem. 2009, 11, 326.
(17) For selected reviews on domino reactions, see: (a) Tietze, L. F.
Chem. ReV. 1996, 96, 115. (b) Parsons, P. J.; Penkett, C. S.; Shell, A. J.
Chem. ReV. 1996, 96, 195. (c) Ikeda, S.-I. Acc. Chem. Res. 2000, 33, 511.
(d) Tietze, L. F.; Brasche, G.; Gericke, K. Domino Reactions in Organic
Synthesis; Wiley-VCH, Verlag GmbH & Co: Weinheim, Germany, 2006.
(e) Hussain, M. M.; Walsh, P. J. Acc. Chem. Res. 2008, 41, 883. (f) Sun,
X. L.; Tang, Y. Acc. Chem. Res. 2008, 41, 937.
(20) (a) Zheng, Z.; Alper, H. Org. Lett. 2008, 10, 4903. (b) Chouhan,
G.; Alper, H. Org. Lett. 2008, 10, 4987. (c) Chouhan, G.; Alper, H. J. Org.
Chem. 2009, 74, 6181.
(21) Chouhan, G.; Alper, H. Org. Lett. 2010, 12, 192.
(22) Zheng, Z.; Alper, H. Org. Lett. 2009, 11, 3278.
(23) Vieira, T. O.; Meaney, L. A.; Shi, Y.-L.; Alper, H. Org. Lett. 2008,
10, 4899.
(18) Zeng, F. L.; Alper, H. Org. Lett. 2010, 12, 3642.
(19) (a) Zeng, F. L.; Alper, H. Org. Lett. 2010, 12, 1188. (b) Zheng, Z.;
Alper, H. Org. Lett. 2008, 10, 829.
5568
Org. Lett., Vol. 12, No. 23, 2010