2884 J ournal of Medicinal Chemistry, 2001, Vol. 44, No. 18
Coghlan et al.
(4) Parrillo, J . E.; Fauci, A. S. Mechanisms of glucocorticoid action
on immune processes. Annu. Rev. Pharmacol. Toxicol. 1979, 19,
179-201.
(5) Sakai, M.; Muramatsu, M. Regulation of gene expression by
steroid hormones. Taisha 1985, 22, 1037-1044.
(6) Ali, S. L. Prednisolone. Anal. Profiles Drug Subst. Excipients
1992, 21, 415-500.
(7) Cohen,E.M.Dexamethasone [9.alpha.-fluoro-11.beta.,17.alpha.,21-
trihydroxy-16.alpha.-methyl pregna-1,4-diene-3,20-dione]. Anal.
Profiles Drug Subst. 1973, 2, 163-197.
(8) Evans, R. M. The steroid and thyroid hormone receptor super-
family. Science 1988, 240, 889-895.
(9) Carson-J urica, M. A.; Schrader, W. T.; O’Malley, B. W. Steroid
receptor family: structure and functions. Endocr. Rev. 1990, 11,
201-220.
(10) O’Malley, B. W.; Tsai, M.-J . Overview of the steroid receptor
superfamily of gene regulatory proteins. In Steroid Horm. Action;
M. G. Parker, Eds.; IRL: Oxford, U.K., 1993; pp 45-63.
(11) Weinberger, C.; Hollenberg, S. M.; Ong, E. S.; Harmon, J . M.;
Brower, S. T.; Cidlowski, J .; Thompson, E. B.; Rosenfeld, M. G.;
Evans, R. M. Identification of human glucocorticoid receptor
complementary DNA clones by epitope selection. Science 1985,
228, 740-742.
(12) Forman, B. M.; Tzameli, I.; Choi, H.-S.; Chen, J .; Simha, D.; Seol,
W.; Evans, R. M.; Moore, D. D. Androstane metabolites bind to
and deactivate the nuclear receptor CAR-â. Nature 1998, 395,
612-615.
F igu r e 3. Comparison of 13 vs prednisolone in sephadex-
induced eosinophil influx in rat lung.
Figure 3 depicts the dose response curves for predniso-
lone versus this early member of the new series of GR
ligands. Compound 13 is fully efficacious in this assay
with a dose response similar to that of conventional
glucocorticoids.
(13) Greene, G. L.; Gilna, P.; Waterfield, M.; Baker, A.; Hort, Y.;
Shine, J . Sequence and expression of human estrogen receptor
complementary DNA. Science 1986, 231, 1150-1154.
(14) Misrahi, M.; Atger, M.; D’Auriol, L.; Loosfelt, H.; Meriel, C.;
Fridlansky, F.; Guiochon-Mantel, A.; Galibert, F.; Milgrom, E.
Complete amino acid sequence of the human progesterone
receptor deduced from cloned cDNA. Biochem. Biophys. Res.
Commun. 1987, 143, 740-748.
(15) Misrahi, M.; Loosfelt, H.; Atger, M.; Perrot-Applanat, M.;
Guiochon-Mantel, A.; Milgrom, E. Cloning and immunolocaliza-
tion of human and rabbit progesterone receptors. Prog. Cancer
Res. Ther. 1988, 35, 27-33.
(16) Arriza, J . L.; Weinberger, C.; Cerelli, G.; Glase, T. M.; Handelin,
B. L.; Housman, D. E.; Evans, R. M. Cloning of human miner-
alocorticoid receptor complementary DNA: structural and func-
tional kinship with the glucocorticoid receptor. Science 1987, 237,
268-275.
(17) Chang, C.; Kokontis, J .; Liao, S. Molecular cloning of human
and rat complementary DNA encoding androgen receptors.
Science 1988, 240, 324-326.
(18) Mulatero, P.; Veglio, F.; Pilon, C.; Rabbia, F.; Zocchi, C.; Limone,
P.; Boscaro, M.; Sonino, N.; Fallo, F. Diagnosis of glucocorticoid-
remediable aldosteronism in primary aldosteronism: aldosterone
response to dexamethasone and long polymerase chain reaction
for chimeric gene. J . Clin. Endocrinol. Metab. 1998, 83, 2573-
2575.
(19) Neef, G.; Beier, S.; Elger, W.; Henderson, D.; Wiechert, R. New
steroids with antiprogestational and antiglucocorticoid activities.
Steroids 1984, 44, 349-372.
(20) Evans, R. M. Molecular characterization of the glucocorticoid
receptor. Recent Prog. Horm. Res. 1989, 45, 1-27.
(21) Yang-Yen, H. F.; Chambard, J . C.; Sun, Y. L.; Smeal, T.; Schmidt,
T. J .; Drouin, J .; Karin, M. Transcriptional interference between
c-J un and the glucocorticoid receptor: mutual inhibition of DNA
binding due to direct protein-protein interaction. Cell 1990, 62,
1205-1215.
(22) Brattsand, R.; Linden, M. Cytokine modulation by glucocorti-
coids: mechanisms and actions in cellular studies. Aliment
Pharmacol Ther 1996, 10, 81-92.
Con clu sion
A novel series of nonsteroidal, GR-selective ligands
was discovered that mimic the functional effects of
conventional glucocorticoids. The novel tetracyclic quin-
oline core represents a novel scaffold that provides
functional ligands for the family of steroid receptors.
Receptor binding as well as assays of activation and
repression using cotransfected and native cell lines has
enabled the characterization of a novel series of 10-
substituted 5-aryl-1,2-dihydro-2,2,4-trimethyl-5H-chro-
meno-[3,4-f]quinolines that are comparable to predniso-
lone. The 10-substituent was the key for GR selectivity,
and in vitro assays of these analogues demonstrated
that meta-substituted C-5 phenyl analogues were com-
parable to GCs in GR-mediated function. Upon oral
administration, compound 13 was comparable to pred-
nisolone in a rodent in vivo model of asthma. To the
best of our knowledge, this is the first report of nonste-
roidal GR-selective ligands whose functional profile
mimics those of natural glucocorticoids. This exciting
result is currently under intense investigation aimed
at separation of GR-mediated activation from repres-
sion. More comprehensive discussions of this SAR will
be published in separate reports as well as other
investigations of the in vitro and in vivo effects of this
novel class of selective ligands for the glucocorticoid
receptor.
Su p p or tin g In for m a tion Ava ila ble: Detailed descrip-
tions of reaction conditions, compound characterization data,
and assay protocols are available free of charge via the Internet
at http://acs.org.
(23) van der Burg, B.; Liden, J .; Okret, S.; Delaunay, F.; Wissink,
S.; van der Saag, P. T.; Gustafsson, J .-A. Nuclear factor-kappa
B repression in antiinflammation and immunosuppression by
glucocorticoids. Trends Endocrinol. Metab. 1997, 8, 152-157.
(24) Heck, S. Transcriptional repression as molecular basis of the
antiinflammatory action of glucocorticoids. Ph.D. Thesis, Wiss.
Ber. Forschungszent., Karlsruhe, 1998.
Refer en ces
(25) J onat, C.; Rahmsdorf, H. J .; Park, K. K.; Cato, A. C.; Gebel, S.;
Ponta, H.; Herrlich, P. Antitumor promotion and antiinflam-
mation: down-modulation of AP-1 (Fos/J un) activity by gluco-
corticoid hormone. Cell 1990, 62, 1189-1204.
(26) Edwards, J . P.; West, S. J .; Marschke, K. B.; Mais, D. E.;
Gottardis, M. M.; J ones, T. K. 5-Aryl-1,2-dihydro-5H-chromeno-
[3,4-f]quinolines as potent, orally active, nonsteroidal progest-
erone receptor agonists: the effect of D-ring substituents. J . Med.
Chem. 1998, 41, 303-310.
(27) Quan, D. Q.; Sournies, F. Synthesis, structural, and chemical
studies of new areneboronic acids. 2,6-dimethoxy and 2,3-
dimethoxybenzeneboronic acids and their derivatives. Bull. Soc.
Chim. Fr. 1973, 767-769.
(1) Schimmer, B. P.; Parker, K. L. Adrenocorticotropic Hormone;
Adrenocortical Steroids and Their Synthetic Analogs; Inhibitors
of the Synthesis and Actions of Adrenocortical Hormones. In
Goodman & Gilman’s The Pharmacological Basis of Therapeu-
tics, 9th ed.; Hardman, J . G., Limbird, L. E., Molinoff, P. B.,
Ruddon, R. W., Eds.; McGraw-Hill: New York, 1996; pp 1459-
1485.
(2) Baxter, J . D. Glucocorticoid hormone action. Pharmacol. Ther.
[B] 1976, 2, 605-669.
(3) Avioli, L. V., Gennari, C., Imbimbo, B., Eds. Advances in
Experimental Medicine and Biology, Vol. 171: Glucocorticoid
Effects and Their Biological Consequences; Plenum Press: New
York, NY, 1984.