Please do not adjust margins
Organic & Biomolecular Chemistry
Page 4 of 5
ARTICLE
Journal Name
DOI: 10.1039/C8OB01882K
Zhang, F.-X. Zhang and J.-J. Chen, Bioorg. Med. Chem. Lett., 2008,
18, 3787; (e) L.-J. Guo, C.-X. Wei, J.-H. Jia, L.-M. Zhao and Z.-S. Quan,
Eur. J. Med. Chem. 2009, 44, 954.
3. (a) L.-J. Huang, M.-C. Heieh, C.-M. Teng, K.-H. Lee and S.-C. Kuo,
Bioorg. Med. Chem., 1998, 6, 1657; (b) D. W. End, G. Smets, A. V.
Todd, T. L. Applegate, C. J. Fuery, P. Angibaud, M. Venet, G. Sanz, H.
Poignet, S. Skrzat, A. Devine, W. Wouters and C. Bowden, Cancer
Res. 2001, 61, 131; (c) P. R. Angibaud, M. G. Venet, W. Filliers, R.
Broeckx, Y. A. Ligny, P. Muller, V. S. Poncelet and D. W. End, Eur. J.
Org. Chem. 2004, 479; (d) J. M. Kraus, C. L. M. J. Verlinde, M. Karimi,
Scheme 4 Plausible mechanism.
Conclusions
In summary, a facile method for the formation of 3-substituted
quinolin-2(1H)‑ones through Ag(I)-mediated cyclization of o- G. I., Lepesheva, M. H. Gelb and F. S. Buckner, J. Med. Chem., 2009,
52, 1639; (e) B. Joseph, F. Darro, A. Bꢁhard, B. Lesur, F. Collignon, C.
Decaestecker, A. Frydman, G. Guillaumet and R. Kiss, J. Med. Chem,.
2002, 45, 2543; (f) G. Claassen, E. Brin, C. Crogan-Grundy, M. T.
Vaillancourt, H. Z. Zhang, S. X. Cai, J. Drewe, B. Tseng and S.
Kasibhatla, S. Cancer Lett., 2009, 274, 243; (g) H. M. Hassanin and S.
M. El-edfawy, Heterocycles, 2012, 85, 2421.
4. W. W. K. R. Mederski, M. Osswald, D. Dorsch, M. Christadier, C. J.
Schmitge and C. Wilm, Bioorg. Med. Chem. Lett., 1997, 7, 1883.
5. N. Beier, E. Labitzke, W. W. K. R. Mederski, H.-E. Radunz, K.
Rauschenbach-Ruess and B. Schneider, Heterocycles, 1994, 39, 117.
6. K. Chen, S.-C. Kuo, M.-C. Hsieh, A. Mauger, C. M. Lin, E. Hamel
alkynylisocyanobenzenes was accomplished. The reactions readily
proceeded under open-flask conditions. Water was an oxygen and
proton distributor in this transformation. The reaction can
accommodate a wide variety of substrates bearing electronically
and sterically different substituents to provide numerous 3-
substituted quinolin-2(1H)‑one derivatives in moderate to good
yields.
Acknowledgements
We thank the Thailand Research Fund (IRN58W0005 and and K.-H. Lee, J. Med. Chem., 1997, 40, 2266.
7. (a) F. Strelitz, H. Flon and I. N. Asheshov, Proc. Natl. Acad. Sci. U.
BRG6180005), Mahidol University, the Center of Excellence for
Innovation in Chemistry (PERCH-CIC), the Office of the Higher
Education Commission, PICS6663 ISMA (France/Thailand), and the
Franco−Thai Cooperation Program in Higher Education and
Research (PHC Siam 2017), and the Swedish Research Council (VR)
for financial support. The Institute for the Promotion of Teaching
Science and Technology and Science Achievement Scholarship of
Thailand (SAST) for financial support through student scholarships
to O.K. and J.M. are also gratefully acknowledged.
S. A., 1955, 41, 620; (b) H. Naganawa, T. Wakashiro, A. Yagi, S.
Kondo, T. Takita, M. Hamada, K. Maeda and H. Umezawa, J.
Antibiot., 1970, 23, 365; (c) R. M. Forbis and K. L. Rinehart Jr., J. Am.
Chem. Soc., 1973, 95, 5003; (d) A. M. Nadzan and K. L. Rinehart Jr.,
J. Antibiot., 1977, 30, 523.
8. (a) T. Bach, H. Bergmann, B. Grosch and K. Harms, J. Am. Chem.
Soc., 2002, 124, 7982; (b) A. Chilin, C. Marzano, F. Baccichetti, M.
Simonato, A. Guiotto, Bioorg. Med. Chem., 2003, 11, 1311; (c) R.
Kumabe and H. Nishino, Tetrahedron Lett., 2004, 45, 703; (d) T. N.
Glasnov, W. Stadlbauer and C. O. Kappe, J. Org. Chem., 2005, 70,
3864; (e) J. T. Kuethe, A. Wong, C. Qu, J. Smitrovich, I. W. Davies
and D. L. Hughes, J. Org. Chem., 2005, 70, 2555.
Notes and references
9. (a) D. V. Kadnikov and R. C. Larock, J. Organometallic Chem.,
2003, 687, 425; (b) P. J. Manley and M. T. Bilodeau, Org. Lett., 2004,
6, 2433; (c) J. Minville, J. Poulin, C. Dufresne and C. F. Sturino,
Tetrahedron Lett., 2008, 49, 3677; (d) F. X. Felpin, J. Coste, C. Zakri
and E. Fouquet, Chem. Eur. J., 2009, 15, 7238; (e) X. Huang, D.
Wang, P. Zhao and K. Ding, Synthesis, 2011, 10, 1547; (f) X. Liu, X.
Xin, D. Xiang, R. Zhang, S. Kumar, F. Zhou and D. Dong, Org. Biomol.
Chem., 2012, 10, 5643; (g) L. Liu, H. Lu, H. Wang, C. Yang, X. Zhang,
D. Z. Negrerie, Y. Du and K. Zhao, Org. Lett., 2013, 15, 2906; (h) R.
Manikandan and M. Jeganmohan, Org. Lett., 2014, 16, 3568; (i) A.
V. Aksenov, A. N. Smirnov, N. A. Aksenov, I. V. Aksenova, A. S.
Bijieva and M. Rubin, Org. Biomol. Chem., 2014, 12, 9786; (j) W.
Wang, X. Peng, X. Qin, X. Zhao, C. Ma, C.-H. Tung and Z. Xu, J. Org.
Chem., 2015, 80, 2835−2841; (k) A. V. Aksenov, A. N. Smirnov, N. A.
Aksenov, I. V. Aksenova, J. P. Matheny and M. Rubin, RSC Adv.,
2015, 5, 8647; (l) J. Wu, S. Xiang, J. Zeng, M. Leow and X.-W. Liu,
Org. Lett., 2015, 17, 222; (m) X. Zhang, H. Liu and Y. Jia, Chem.
Commun., 2016, 52, 7665; (n) X. Chen, X. Cui, and Y. Wu, Org. Lett.,
2016, 18, 2411; (o) Zhang, L.-L. Liao, S.-S. Yan, L. Wang, Y.-Q. He, J.-
H. Ye, J. Li, Y.-G. Zhi and D.-G. Yu, Angew. Chem., Int. Ed., 2016, 55,
7068; (p) D. Wang, J. Zhao, Y. Wang, J. Hu, L. Li, L. Miao, H. Feng, L.
Désaubry and P. Yu, Asian J. Org. Chem., 2016, 5, 1442; (q) X. Zhang,
X. Han, J. Chen and X. Lu, Tetrahedron, 2017, 73, 1541; (r) L.-Y. Xie,
Y. Duan, L.-H. Lu, Y.-J. Li, S. Peng, C. Wu, K.-J. Liu, Z. Wang and W.-
1. (a) L. A. McQuaid, E. C. R. Smith, D. Lodge, E. Pralong, J. H. Wikel,
D. O. Calligaro and P. J. O’Malley, J. Med. Chem., 1992, 35, 3423; (b)
J. P. Michael, Nat. Prod. Rep., 1995, 12, 465; (c) R. W. Carling, P. D.
Leeson, K. W. Moore, C. R. Moyer, M. Duncton, M. L. Hudson, R.
Baker, A. C. Foster, S. Grimwood, J. A. Kemp, G. R. Marshall, M. D.
Tricklebank and K. L. Saywel, J. Med. Chem., 1997, 40, 754; (d) S.
Grabley and R. Thiericke, In Drug Discovery from Nature, Springer-
Verlag, Berlin, 1999; (e) H. S. Chung and W. S. Woo, J. Nat. Prod.,
2001, 64, 1579; (f) C. Ito, M. Itoigawa, A. Furukawa, T. Hirano, T.
Murata, N. Kaneda, Y. Hisada, K. Okuda and H. Furukawa, J. Nat.
Prod., 2004, 67, 1800; (g) J. He, U. Lion, I. Sattler, F. A. Gollmick, S.
Grabley, J. Cai, M. Meiner, H. Schunke, K. Schaumann, U. Dechert
and M. Krohn, J. Nat. Prod., 2005, 6, 1397; (h) B. C. Kieseier and H.
Wiendl, CNS Drugs., 2007, 21, 483; (i) C. Peifer, R. Urich, V. Schattel,
M. Abadleh, M. Röttig, O. Kohlbacher and Laufer, S. Bioorg. Med.
Chem. Lett., 2008, 18, 1431; (j) N. Igoe, E. D. Bayle, O. Fedorov, C.
Tallant, P. Savitsky, C. Rogers, D. R. Owen, G. Deb, T. C. P.
Somervaille, D. M. Andrews, N. Jones, A. Cheasty, H. Ryder, P. E.
Brennan, S. Mꢀller, S. Knapp and P. V. Fish, J. Med. Chem., 2017, 60,
668.
2. (a) D. R. Sliskovic, J. A. Picard, W. H. Roark, B. D. Roth, E.
Ferguson, B. R. Krause, R. S. Newton, C. Sekerke and M. K. Shaw, J.
Med. Chem,. 1991, 34, 367; (b) C. Marzano, A. Chilin, F. Baccichetti,
F. Bettio, A. Guiotto, G. Miolo and F. Bordin, Eur. J. Med. Chem.,
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins