LETTER
Diastereoselective Synthesis of Vinylcyclopropanes
519
166.1 (CO2Me). GC (MN OPTIMAS-5; 150 °C for 10 min and then
290 °C, 7 °C/min): 22.3 min. MS (APCI): m/z = 233 [M + 1]+, 201
[M + 1 – MeOH]+, 173 [M + 1 – HCO2Me]+.
Table 1 Synthesis of Vinylcyclopropanes
R
BF4
LiHMDS
Minor (cis) isomer: 1H NMR (500 MHz, CDCl3): d = 1.32 (m, 1 H,
HCH), 1.36 (m, 1 H, HCH), 1.65 (m, 1 H, HCCH2=CH2), 2.43 (m,
1 H, HCAr), 3.67 (s, 3 H, OCH3), 3.73 (5.83 (s, 3 H, OCH3), 5.84
(d, 1 H, J = 15.4 Hz, CHCO2Me), 6.16 (dd, 1 H, J = 15.4, 10.5 Hz,
Ar
S
+
Ar
CH2Cl2, –78 °C
R
1
2
3
Entry
R
Ar
Yield Regiose- trans/cisb
CH=CHCO2Me), 6.75 (m, 2 H, ArH), 7.06 (d, 2 H, J = 8.6 Hz). 13
C
(%)a
lectivityb
88:12
88:12
91:9
NMR (125 MHz, CDCl3): d = 12.8 (CH2), 16.4 (CHAr), 23.8
(CHCH2=CH2), 50.2 (OCH3), 54.2 (OCH3), 112.8 (CHCOMe),
118.4 (CHCO2Me), 129.0 (CHC-cyclopropyl), 129.4 (C-cyclopro-
pyl), 149.6 (CH-cyclopropyl), 158.1 (COMe), 165.7 (CO2Me). GC
(MN OPTIMAS-5; 150 °C for 10 min and then 290 °C, 7 °C/min):
20.7 min.
1
2
3
4
5
6
7
8
9
10
CO2Me
Ph
98
93:7
4-MeOC6H4
94
85:15
89:11
94:6
4-CO2MeC6H4 77
4-MeC6H4
4-FC6H4
98
99
99
99
99
88
70c
88:12
86:14
89:11
87:13
97:3
Characterization of 4 with Ar = 4-MeOC6H4 and R = CO2Me
1H NMR (500 MHz; CDCl3): d = 2.15 (dd, 1 H, J = 5.4, 4.8 Hz,
HCAr), 2.43 (ddd, 1 H, J = 9.6, 8.7, 4.8 Hz, HCH=CH2), 2.90 (dd,
1 H, J = 9.6, 5.4 Hz, HCCO2Me), 3.76 (s, 3 H, OCH3), 3.81 (s, 3 H,
OCH3), 5.01 (dd, 1 H, J = 9.9, 2.1 Hz, cis-HCH=CH), 5.17 (ddd, 1
H, J = 17.1, 9.9, 8.7 Hz, CH=CH2), 5.26 (dd, 1 H, J = 17.1, 2.1 Hz,
trans-HCH=CH), 6.85 (d, 2 H, J = 8.7 Hz, Ar), 7.13 (d, 1 H, J = 8.7
Hz, Ar). GC (MN OPTIMAS-5; 150 °C for 10 min and then 290 °C,
7 °C/min): 18.3 min.
90:10
95:5
2-ClC6H4
2-MeOC6H4
3-MeC6H4
3-FC6H4
93:7
94:6
96:4
92:8
PO(OEt)2 Ph
>95:5
72:28
Acknowledgment
a Global yield.
The authors thank the Fonds de la Recherche Scientifique - FNRS
(F.R.S.-FNRS) for financial support, Dr. David Chapon for assi-
stance with NMR spectroscopy, and J.-C. Monbaliu for a generous
gift of 1-(diethylphosphono)butadiene. R.R. is indebted to Prof. V.
K. Aggarwal for fruitful discussions and his support. R.R. is a Char-
gé de Recherches F.R.S.-FNRS and J.M.-B. is a senior research as-
sociate of the F.R.S.-FNRS.
b Ratio was determined by 1H NMR and/or GC analysis, and relative
stereochemistry was determined by 1H NMR (500 MHz).
c Reaction carried out at –5 °C.
of functional groups. The efficiency of this method has
been demonstrated by the short synthesis of key interme-
diates in the synthesis of lamoxirene and dictyopterene B.
We are currently exploring the use of chiral sulfonium
salts to develop an asymmetric version of this strategy.
References and Notes
(1) For reviews, see: (a) Pietruszka, J. Chem. Rev. 2003, 103,
1051. (b) Faust, R. Angew. Chem. Int. Ed. 2001, 40, 2251.
(c) Sonawane, H. R.; Bellur, N. S.; Kulkarni, D. G.; Ahuja,
J. R. Synlett 1993, 875. (d) The Chemistry of the
Typical Procedure for the Cyclopropanation Reaction
LiHMDS (2.2 mmol; 1 M solution in THF) was added dropwise, at
–78 °C, to a solution of sulfonium salt (2 mmol) and diene (2.2
mmol) in CH2Cl2 (7 mL) The reaction mixture was stirred at this
temperature for 1–6 h. The cold bath was then removed, allowing
the solution to warm to r.t. The reaction was quenched with HCl (1
N). The organic extract was concentrated under reduced pressure
and redissolved in Et2O. This solution was washed with HCl (1 N),
H2O, and brine before being dried over MgSO4 and concentrated
under vacuum to yield the desired substituted cyclopropane. The
cis- and trans-isomers can be separated by column chromatography
on silica gel.
Cyclopropyl Group, Vol. 1; Rappoport, Z., Ed.; Wiley and
Sons: New York, 1987.
(2) For some examples, see: (a) Salaün, J.; Baird, M. S. Curr.
Med. Chem. 1995, 2, 511. (b) Yoshida, M.; Ezaki, M.;
Hashimoto, M.; Yamashita, M.; Shigematsu, N.; Okuhara,
M.; Kohsaka, M.; Horikoshi, K. J. Antibiotics 1990, 43,
748. (c) Connor, D. T.; Greenough, R. C.; von Strandtmann,
M. J. Org. Chem. 1977, 42, 3664. (d) Pettus, J. A.; Moore,
R. E. J. Chem. Soc., Chem. Commun. 1970, 17, 1093.
(3) For a review, see: Lebel, H.; Marcoux, J.-F.; Molinaro, C.;
Charette, A. B. Chem. Rev. 2003, 103, 977.
(4) For some recent works on the synthesis of
vinylcyclopropane carboxylic esters from dienes and diazo
compounds, see: (a) Xu, Z.-H.; Zhu, S.-N.; Sun, X.-L.;
Tang, Y.; Dai, L.-X. Chem. Commun. 2007, 19, 1960.
(b) Adjabeng, G. M.; Gerritsma, D. A.; Bhanabhai, H.;
Frampton, C. S.; Capretta, A. Organometallics 2006, 25,
32. (c) Itagaki, M.; Masumoto, K.; Yamamoto, Y. J. Org.
Chem. 2005, 70, 3292. (d) Moreau, B.; Charette, A. B. J.
Am. Chem. Soc. 2005, 127, 18014. (e) Deng, L.; Giessert,
A. J.; Gerlitz, O. O.; Dai, X.; Diver, S. T.; Davies, H. M. L.
J. Am. Chem. Soc. 2005, 127, 1342. (f) Hahn, N. D.; Nieger,
M.; Dötz, K. H. Eur. J. Org. Chem. 2004, 1049.
Characterization of 3 with Ar = 4-MeOC6H4 and R = CO2Me
Major (trans) isomer: 1H NMR (500 MHz, CDCl3): d = 1.19 (ddd,
1 H, J = 9.0, 5.3, 5.2 Hz, HCH), 1.32 (ddd, 1 H, J = 8.4, 6.2, 5.3 Hz,
HCH), 1.67 (m, 1 H, HCCH2=CH2), 2.07 (ddd, 1 H, J = 9.0, 6.2, 4.2
Hz, HCAr), 3.65 (s, 3 H, OCH3), 3.71 (s, 3 H, OCH3), 5.82 (d, 1 H,
J = 15.4 Hz, CHCO2Me), 6.52 (dd, 1 H, J = 15.4, 9.9 Hz,
CH=CHCO2Me), 6.75 (d, 2 H, J = 8.7 Hz, ArH), 6.94 (d, 2 H,
J = 8.7 Hz, ArH). 13C NMR (125 MHz, CDCl3): d = 16.4 (CH2),
25.3 (CHAr), 25.4 (CHCH2=CH2), 50.4 (OCH3), 54.3 (OCH3),
112.8 (CHCOMe), 117.1 (CHCO2Me), 126.0 (CHC-cyclopropyl),
128.4 (C-cyclopropyl), 151.2 (CH-cyclopropyl), 157.2 (COMe),
Synlett 2008, No. 4, 517–520 © Thieme Stuttgart · New York