of synthetic studies including formal and total syntheses of
fostriecin,8,9 leustroducsin B,10,11 and phoslactomycin B.12
However, apart from fostriecin, additional C4-ethyl, quater-
nary C8-aminoethyl, and cyclohexyl substituents in their
structures hampers the development of an effective route to
these natural products. Herein, we describe an efficient
asymmetric synthesis of (+)-phoslactomycin B (1), which
enables us to prepare various analogues required for biologi-
cal testing as well.
phoslactomycin B (1) to make our approach flexible. We
expected that advanced intermediate 3 as well as its stere-
oisomers 4, 5, and 6 would each be available from 7 by the
combination of stereoselective formation of the E- or
Z-iodoenone and 9-OH directed anti- or syn-selective reduc-
tion. To access 7, we envisaged the approach from alcohol
8 involving Suzuki-Miyaura coupling,13 ring-closing me-
tathesis,14 and Sharpless asymmetric dihydroxylation15 as
major transformations. In this synthetic plan, the first key
issue to be addressed is, therefore, the enantio- and stereo-
controlled construction of alcohol 8. We envisaged that
reaction of aldehyde 10 with chiral (Z)-2-pentenylborane or
boronate 9 would proceed in the same fashion as Brown’s
or Roush’s asymmetric crotylation16,17 to produce 8 in
desired diastereo- and enantioselectivity, although such
asymmetric pentenylation was unprecedented.
Scheme 1. Retrosynthetic Analysis of Phoslactomycin B
Our synthesis of 1 thus began with the enantio- and
stereoselective preparation of alcohol 15 (Scheme 2). 1,3-
Scheme 2. Synthesis of Alcohol 15
Our synthetic plan is illustrated in Scheme 1. Based on
the methodology we have demonstrated in the total synthesis
of fostriecin,9f we envisaged ynone 7 as a precursor of
(5) (a) Walsh, A. H.; Cheng, A.; Honkanen, R. E. FEBS Lett. 1997,
416, 230–234. (b) Hastie, C. J.; Cohen, P. T. FEBS Lett. 1998, 431, 357–
361. (c) Kawada, M.; Kawatsu, M.; Masuda, T.; Ohba, S.; Amemiya, M.;
Kohama, T.; Ishizuka, M.; Takeuuchi, T. Int. Immunopharmacol. 2003, 3,
179–188. (d) Teruya, T.; Shimizu, S.; Kanoh, N.; Osada, H. FEBS Lett.
Propanediol was first converted to iodoalkene 11 as a 4:1
Z/E-mixture by a three-step sequence involving p-methoxy-
benzylation, Swern oxidation, and Horner-Emmons reaction
using in situ generated triethyl iodophosphonoacetate.18 Upon
DIBAH reduction followed by TEMPO oxidation, 11 af-
forded Z-aldehyde 12 in high geometrical purity (20:1), so
that the moderate Z/E-selectivity of the iodolalkenylation step
did not become a serious problem. It is important to note
2005, 579, 2463–2468
.
(6) (a) An acyloxy moiety on the cyclohexane ring, the only structural
variation seen in these phosphate esters, does not affect the PP2A-specific
inhibitory activity. Usui, T.; Marriott, G.; Inagaki, M.; Swarup, G.; Osada,
H. J. Biochem. 1999, 125, 960–965
(7) Palaniappan, N.; Kim, B. S.; Sekiyama, Y.; Osada, H.; Reynolds,
K. A. J. Biol. Chem. 2003, 278, 35552–35557
.
.
(8) For reviews, see: Shibasaki, M.; Kanai, M. Heterocycles 2005, 66,
727–741
.
(9) (a) Boger, D. L.; Ichikawa, S.; Zhong, W. J. Am. Chem. Soc. 2001,
123, 4161–4167. (b) Cossy, J.; Pradaux, F.; BouzBouz, S. Org. Lett. 2001,
3, 2233–2235. (c) Chavez, D. E.; Jacobsen, E. N. Angew. Chem., Int. Ed.
2001, 40, 3667–3670. (d) Reddy, Y. K.; Falck, J. R. Org. Lett. 2002, 4,
961–971. (e) Miyashita, K.; Ikejiri, M.; Kawasaki, H.; Maemura, S.;
Imanishi, T. Chem. Commun. 2002, 742–743. (f) Esumi, T.; Okamoto, N.;
Hatakeyama, S. Chem. Commun. 2002, 3042–3043. (g) Wang, Y.-G.;
Kobayashi, Y. Org. Lett. 2002, 4, 4615–4618. (h) Miyashita, K.; Ikejiri,
M.; Kawasaki, H.; Maemura, S.; Imanishi, T. J. Am. Chem. Soc. 2003,
125, 8238–8243. (i) Fujii, K.; Maki, K.; Kanai, M.; Shibasaki, M. Org.
Lett. 2003, 5, 733–736. (j) Maki, K.; Motoki, R.; Fujii, K.; Kanai, M.;
Kobayashi, T.; Tamura, S.; Shibasaki, M. J. Am. Chem. Soc. 2005, 127,
17111–17117. (k) Trost, B. M.; Frederiksen, M. U.; Papillon, J. P. N.;
Harrington, P. E.; Shin, S.; Shireman, B. T. J. Am. Chem. Soc. 2005, 127,
3666–3667. (l) Hayashi, Y.; Yamaguchi, H.; Toyoshima, M.; Okado, K.;
Toyo, T.; Shoji, M. Org. Lett. 2008, 10, 1405–1408. (m) Yadav, J. S.;
(11) Miyashita, K.; Tsunemi, T.; Hosokawa, T.; Ikejiri, M.; Imanishi,
T. Tetrahedron Lett. 2007, 48, 3829–33833. The convergent synthesis
required 33 total steps exclusive of the manipulation on the cyclohexane
ring. The overall yield of the longest linear sequence was 0.32% in 24 steps
.
(12) Wang, Y.-G.; Takeyama, T.; Kobayashi, Y. Angew. Chem., Int.
Ed. 2006, 45, 3320–3323. The first synthesis was achieved in 0.61% overall
yield in 40 steps exclusive of the manipulation on the cyclohexane ring
(13) For reviews, see: Miyaura, N.; Suzuki, A. Chem. ReV. 1995, 95,
2457–2483. (b) Suzuki, A. J. Organomet. Chem. 1999, 576, 147–168
.
.
(14) For a review, see: Deiters, A.; Martin, S. F. Chem. ReV. 2004, 104,
2199–2238
.
(15) For a review, see: Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless,
K. B. Chem. ReV. 1994, 94, 2483–2547
(16) Brown, H. C.; Bhat, K. S. J. Am. Chem. Soc. 1986, 108, 293–294
(17) Roush, W. R.; Ando, K.; Powers, D. B.; Palkowitz, A. D.;
Halterman, R. L. J. Am. Chem. Soc. 1990, 112, 6339–6348
.
.
Prathap, I.; Tadai, B. P. Tetrahedron Lett. 2006, 47, 3773–3776
.
.
(10) Shimada, K.; Kabburagi, Y.; Fukuyama, T. J. Am. Chem. Soc. 2003,
125, 4048–4049. The first synthesis was achieved in 0.07% overall yield
(18) (a) Braun, N. A.; Klein, I.; Spitzner, D.; Vogler, B.; Braun, S.;
Borrmann, H.; Simon, A. Liebigs Ann. 1995, 2165–2169. (b) Moreau, X.;
Campagne, J.-M. J. Org. Chem. 2003, 68, 5346–5350.
in 47 steps exclusive of the manipulation on the cyclohexane ring
.
2140
Org. Lett., Vol. 10, No. 11, 2008