ˇ
S. Janková, M. Dracˇínský, I. Císarˇová, M. Kotora
SHORT COMMUNICATION
was poured onto crushed ice and extracted with hexane
(3ϫ10 mL). The combined organic layer was dried with MgSO4.
The solvent was evaporated, and column chromatography afforded
the desired products.
position is very well reproduced by the theoretical calcula-
tions. The correlation between the calculated and experi-
mental free energies of activation is shown in Figure 4.
Table 3. Calculated relative energies (referenced to biaryl deriva-
tives, Erel = 0), energies of activation in vacuo and in DMSO, dipole
moments and calculated and experimental free energies of acti-
vation for the rearrangement of Dewar benzene derivatives.[a]
Supporting Information (see footnote on the first page of this arti-
cle): Experimental details, kinetic measurements, and spectral and
crystallographic data.
DB
ERel
DB
ERel
TS
∆E#[b]
∆µ#
∆E#[c] ∆G#[c] ∆G#
exp.
Acknowledgments
6a
6b
6c
6d
6e
6f
54.28 87.44 33.17
54.95 87.66 32.71
55.39 87.77 32.38
55.24 87.59 32.35
55.73 87.47 31.74 –1.32 30.50 30.27 31.19
55.83 87.34 31.72 –0.26 30.35 30.37 31.18
55.64 87.34 31.70 –0.42 30.02 29.83 30.77
0.85
1.20
0.90
0.13
32.29 31.89 32.28
31.89 31.57 32.00
31.42 31.03 31.90
31.04 30.74 31.60
This project was supported by the Centre for New Antivirals and
Antineoplastics (project No. 1M0508) and a project from the Min-
istry of Education of the Czech Republic (MSM0021620857).
6g
[a] All energies in kcalmol–1, dipole moments in Debye. [b] In vac-
uum. [c] In DMSO.
[1] a) H. Hopf, Classics in Hydrocarbon Chemistry, Syntheses,
Concepts, Perspectives, Wiley-VCH, Weinheim, 2000; b) J. F. Li-
ebman, A. Greenberg (Eds.), Molecular Structure and Ener-
getics Vol. 2: Studies of Organic Molecules, John Wiley & Sons,
New York, 1986; c) R. A. Moss, M. S. Platz, M. Jones Jr. in
Reactive Intermediate Chemistry, Wiley-Interscience, Hoboken,
2004, ch. 15, pp. 717–740.
[2] a) L. T. Scott, M. Jones Jr., Chem. Rev. 1972, 72, 181–201; b)
J. L. Liebman, A. Greenberg, Chem. Rev. 1976, 76, 311–365.
[3] The description of bridged formula of benzene is usually attrib-
uted to Dewar, see: J. Dewar, Proc. Roy. Soc. Edinburgh 1867,
6, 82–86. For further discussion on this issue, see: L. Se-
mentsov, J. Chem. Educ. 1966, 43, 151.
[4] a) E. E. van Tamelen, S. P. Pappas, J. Am. Chem. Soc. 1962, 84,
3789–3791; b) E. E. van Tamelen, S. P. Pappas, J. Am. Chem.
Soc. 1963, 85, 3297–3298; c) E. E. van Tamelen, S. P. Pappas,
K. L. Kirk, J. Am. Chem. Soc. 1971, 93, 6092–6101.
[5] a) W. Schaefer, Angew. Chem. 1966, 78, 716; b) W. Schaefer, R.
Criegee, R. Askani, H. Gruener, Angew. Chem. 1967, 79, 54–
55.
[6] a) J. B. Koster, G. J. Timmermans, H. van Bekkum, Synthesis
1971, 139–140; b) F. van Rantwijk, G. J. Timmermans, H.
van Bekkum, Recueil Trav. Chim. Pays-Bas 1976, 95, 39–42.
[7] a) J. H. Dopper, B. Greijdanus, H. Wynberg, Tetrahedron Lett.
1975, 16, 4297–4300; b) J. H. Dopper, B. Greijdanus, H. Wyn-
berg, J. Am. Chem. Soc. 1975, 97, 216–218.
Figure 4. Correlation between calculated and experimental free en-
ergies of activation of Dewar benzene derivatives rearrangement.
Conclusions
The obtained results could be summarized into the fol-
lowing points. Firstly, the aryl-substituted DBs and their
easy thermal rearrangement into the corresponding ben-
zenes may serve as an alternative pathway for synthesis of
sterically hindered biaryls. Secondly, the data obtained from
thermal rearrangements of DBs provide further experimen-
tal evidence for the proposed orbital-symmetry-controlled
electrocyclic ring opening. Thirdly, the theoretical calcula-
tions concerning the transition states and the thermochemi-
cal data are in good agreement with values obtained from
the experimental measurements, and they support the pro-
posed conrotatory Dewar benzene ring opening.
[8] a) P. B. J. Driessen, H. Hogeveen, J. Organomet. Chem. 1978,
156, 265–278; b) P. B. J. Driessen, H. Hogeveen, J. Am. Chem.
Soc. 1978, 100, 1193–1200.
[9] a) R. Gleiter, F. Ohlbach, J. Chem. Soc. Chem. Commun. 1994,
2049–2050; b) R. Gleiter, F. Ohlbach, T. Oeser, H. Irngartinger,
Liebigs Ann. 1996, 785–790.
[10] a) M. Ohkita, K. Ando, K. Yamamoto, T. Suzuki, T. Tsuji,
Chem. Commun. 2000, 83–84; b) M. Ohkita, K. Ando, T. Su-
zuki, T. Tsuji, J. Org. Chem. 2000, 65, 4385–4390; c) M. Ohkita,
K. Ando, T. Tsuji, Chem. Commun. 2001, 2570–2571.
[11] M. J. Marsella, M. M. Meyer, F. S. Tham, Org. Lett. 2001, 3,
3847–3849.
[12] M. J. Marsella, S. Estassi, L.-S. Wang, K. Yoon, Synlett 2004,
192–194.
[13] a) L. Dufková, M. Kotora, I. Císarˇová, Eur. J. Org. Chem.
2005, 2491–2499. For previous reports, see: b) T. Takahashi,
Z. F. Xi, M. Kotora, J. Chem. Soc. Chem. Commun. 1995, 361–
362; c) T. Takahashi, Z. F. Xi, A. Yamazaki, Y. H. Liu, K.
Nakajima, M. Kotora, J. Am. Chem. Soc. 1998, 120, 1672–
1680; d) T. Takahashi, F. Y. Tsai, Y. Li, K. Nakajima, M. Ko-
tora, J. Am. Chem. Soc. 1999, 121, 11093–11100.
Experimental Section
A Typical Procedure for the Preparation of Dewar Benzenes: A solu-
tion of 2-butyne (196 µL, 2.5 mmol) was added to a stirred suspen-
sion of powdered anhydrous AlCl3 (166 mg, 1.25 mmol) in dry
dichloromethane (3 mL) at –10 °C. To the resulting complex was
added the substituted arylpropynoate (1.25 mmol) at –15 °C. After
stirring for 1 h at –15 °C, DMSO (450 µL) was added. The mixture
[14] For cyclobutadiene generation and reactions, see: a) T. Bally,
S. Masamune, Tetrahedron 1980, 36, 343–370; b) G. Maier, An-
gew. Chem. Int. Ed. Engl. 1988, 27, 309–332.
[15] For discussion on the role of DMSO see ref.[6a]
50
www.eurjoc.org
© 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2008, 47–51