knowledge, there have been few reports about application
of PdNPs in the Negishi reaction. Ligand-free Pd(OAc)2-
catalyzed Negishi couplings under homeopathic conditions
from 25 to 100 °C to prepare biaryls were reported once.53
Fu et al. had demonstrated an elegant example of Negishi
couplings between alkyl electrophiles and organozirconium
reagents under “ligandless” conditions in 2004.54 Recently,
we discovered that ligand-free Pd(OAc)2 could efficiently
promote Negishi reactions of alkyl-, aryl-, and alkynylzinc
reagents. Herein, we communicate our results.
Table 1. PdNP-Catalyzed Negishi Coupling of Aryl Iodides
with Primary Alkylzinc Reagentsa
When the reaction of ethyl 2-iodobenzoate 1a with n-
dodecylzinc chloride 2a was monitored by in situ IR, we
surprisingly found that the reaction proceeded quickly and
produced ethyl 2-dodecylbenzoate 3a in high yield using
Pd(OAc)2 as a catalyst precursor and a stoichimetric amount
of Bu4NBr as an additive. Pd(OAc)2 (0.5 mol %) promoted
(16) Giovannini, R.; Studemann, T.; Dussin, G.; Knochel, P. Angew.
Chem., Int. Ed. 1998, 37, 2387–2390.
(17) Giovannini, R.; Stuedemann, T.; Devasagayaraj, A.; Dussin, G.;
Knochel, P. J. Org. Chem. 1999, 64, 3544–3553.
(18) Jensen, A. E.; Knochel, P. J. Org. Chem. 2002, 67, 79–85.
(19) Knochel, P.; Perea, J. J. A.; Jones, P. Tetrahedron 1998, 54, 8275–
8319.
(20) Astruc, D.; Lu, F.; Aranzaes, J. R. Angew. Chem., Int. Ed. 2005,
44, 7852–7872.
(21) Moreno-Manas, M.; Pleixats, R. Acc. Chem. Res. 2003, 36, 638–
643.
(22) Astruc, D. Inorg. Chem. 2007, 46, 1884–1894.
(23) Johnson, B. F. G. Top. Catal. 2003, 24, 147–159.
(24) Yao, Q.; Kinney, E. P.; Yang, Z. J. Org. Chem. 2003, 68, 7528–
7531.
(25) Reetz, M. T.; Westermann, E. Angew. Chem., Int. Ed. 2000, 39,
165–168.
a Reaction conditions: aryl iodide (1 mmol), alkylzinc reagent (2 mmol),
Pd(OAc)2 (0.005 mmol), Bu4NBr (1 mmol) at rt. b Isolated yield.
(26) Reetz, M. T.; Westermann, E.; Lohmer, R.; Lohmer, G. Tetrahedron
Lett. 1998, 39, 8449–8452.
(27) Yu, K.; Sommer, W.; Weck, M.; Jones, C. W. J. Catal. 2004, 226,
101–110.
(28) Richardson, J. M.; Jones, C. W. J. Catal. 2007, 251, 80–93.
(29) Weck, M.; Jones, C. W. Inorg. Chem. 2007, 46, 1865–1875.
(30) Shiels, R. A.; Jones, C. W. J. Mol. Catal. A: Chem. 2007, 261,
160–166.
the reaction to completion in 32 s at 25 °C, and gave 92% yield
(see Figure 1 in the Supporting Information). Importantly,
alkylzinc reagents with ꢀ-H tend to undergo ꢀ-H elimination
to give dehalogenated byproducts in many cases, but in our
system, only 8% of ethyl benzoate (determined by GC) was
detected.
Without further optimization, the substrate scope of the
reaction involving aryl iodides and primaryl alkylzinc reagents
was examined. At 25 °C, 0.5 mol % of Pd(OAc)2 promoted
the Csp3-Csp2 coupling smoothly. Ethyl 2-iodobenzoate 1a
reacted with primary alkylzinc chlorides in excellent yields
(Table 1, entries 1-4). Ethyl 4-iodobenzoate 1b gave moderate
yield (Table 1, entry 5). However, the reaction involving the
electron-rich electrophile 2-iodoanisole 1d was unsatisfactory
(Table 1, entry 7).
(31) Richardson, J. M.; Jones, C. W. AdV. Synth. Catal. 2006, 348, 1207–
1216.
(32) Phan, N. T. S.; Van Der Sluys, M.; Jones, C. W. AdV. Synth. Catal.
2006, 348, 609–679.
(33) Yu, K.; Sommer, W.; Richardson, J. M.; Weck, M.; Jones, C. W.
AdV. Synth. Catal. 2005, 347, 161–171.
(34) Biffis, A.; Zecca, M.; Basato, M. Eur. J. Inorg. Chem. 2001, 1131–
1133.
(35) Farina, V. AdV. Synth. Catal. 2004, 346, 1553–1582.
(36) Reetz, M. T.; de Vries, J. G. Chem. Commun. 2004, 1559–1563.
(37) Biffis, A.; Zecca, M.; Basato, M. J. Mol. Catal. A: Chem. 2001,
173, 249–274.
(38) Srimani, D.; Sawoo, S.; Sarkar, A. Org. Lett. 2007, 9, 3639–3642.
(39) Ananikov, V. P.; Orlov, N. V.; Beletskaya, I. P.; Khrustalev, V. N.;
Antipin, M. Y.; Timofeeva, T. V. J. Am. Chem. Soc. 2007, 129, 7252–
7253.
(40) Thathagar, M. B.; ten Elshof, J. E.; Rothenberg, G. Angew. Chem.,
Int. Ed. 2006, 45, 2886–2890.
When secondary cyclohexylzinc chloride 2i was utilized
as the nucleophile, coupling with 1a proceeded smoothly in
98% yield (Table 2, entry 4). The reaction of sec-butylzinc
chloride 2f and 1a produced the desired product in 96%
isolated yield, yet the selectivity (ratio of ethyl 2-sec-
butylbenzoate and ethyl 2-butylbenzoate) was poor (Table
(41) Consorti, C. S.; Flores, F. R.; Dupont, J. J. Am. Chem. Soc. 2005,
127, 12054–12065.
(42) Dupont, J.; Consorti, C. S.; Spencer, J. Chem. ReV. 2005, 105, 2527–
2571.
(43) Cui, X.; Zhou, Y.; Wang, N.; Liu, L.; Guo, Q.-X. Tetrahedron Lett.
2006, 48, 163–167.
(44) Hagiwara, H.; Sugawara, Y.; Hoshi, T.; Suzuki, T. Chem. Commun.
2005, 2942–2944.
(45) Palmisano, G.; Bonrath, W.; Boffa, L.; Garella, D.; Barge, A.;
Cravotto, G. AdV. Synth. Catal. 2007, 349, 2338–2344.
(46) Chen, W.; Xi, C.; Wu, Y. J. Organomet. Chem. 2007, 692, 4381–
4388.
(49) Arvela, R. K.; Leadbeater, N. E. J. Org. Chem. 2005, 70, 1786–
1790.
(50) Weissman, S. A.; Zewge, D.; Chen, C. J. Org. Chem. 2005, 70,
1508–1510.
(47) Du, L.-H.; Wang, Y.-G. Synth. Commun. 2007, 37, 217–222.
(48) Cui, X.; Li, Z.; Tao, C.-Z.; Xu, Y.; Li, J.; Liu, L.; Guo, Q.-X. Org.
Lett. 2006, 8, 2467–2470.
(51) de Vries, A. H. M.; Mulders, J. M. C. A.; Mommers, J. H. M.;
Henderickx, H. J. W.; de Vries, J. G. Org. Lett. 2003, 5, 3285–3288.
2662
Org. Lett., Vol. 10, No. 13, 2008