372 Journal of Combinatorial Chemistry, 2010 Vol. 12, No. 3
Table 3. Efficiency of the Recovered Catalyst
Ding et al.
China (20962010), Natural Science Foundation of Jiangxi
Province of China (2009GQH0054), Jiangxi Educational
Committee (GJJ10387), and Startup Foundation for Doctors
of Jiangxi Normal University (200900266) is gratefully
acknowledged.
Supporting Information Available. Experimental pro-
cedures, characterization data, and 1H and 13C NMR spectra
of compound 3. This information is available free of charge
no. of cycles
yield (%)
cycle I
98
cycle II
95
cycle III
92
cycle IV
89
The same procedure was repeated for all further cycles. The
recovered silica gel could be reused for several times with
just slight loss of catalytic activity.
References and Notes
(1) (a) Posner, G. H. Chem. ReV. 1986, 86, 831–844. (b) Ho, T.-
L. Tandem Organic Reactions; Wiley-Interscience: New York,
1992. (c) Hall, N. Science 1994, 266, 32–34. (d) Tietze, L. F.
Chem. ReV. 1996, 96, 115–136. (e) Wasilke, J.-C.; Obrey, S. J.;
Baker, R. T.; Bazan, G. C. Chem. ReV. 2005, 105, 1001–1020.
(2) (a) DeMartino, G.; Edler, M. C.; LaRegina, G.; Coluccia, A.;
Barbera, M. C.; Barrow, D.; Nicholson, R. I.; Chiosis, G.;
Brancale, A.; Hamel, E.; Artico, M.; Silvestri, R. J. Med.
Chem. 2006, 49, 947–954. (b) Gangjee, A.; Zeng, Y.; Talreja,
T.; McGuire, J. J.; Kisliuk, R. L.; Queener, S. F. J. Med. Chem.
2007, 50, 3046–3053. (c) Liu, G.; Huth, J. R.; Olejniczak,
E. T.; Mendoza, R.; DeVries, P.; Leitza, S.; Reilly, E. B.;
Okasinski, G. F.; Fesik, S. W.; von Geldern, T. W. J. Med.
Chem. 2001, 44, 1202–1210. (d) Hassan, J.; Sevignon, M.;
Gozzi, C.; Schulz, E.; Lemaire, M. Chem. ReV. 2002, 102,
1359–1470. (e) Beletskaya, I. P.; Cheprakov, A. V. Coord.
Chem. ReV. 2004, 248, 2337–2364. (f) Corbet, J.-P.; Mignani,
G. Chem. ReV. 2006, 106, 2651–2710. (g) Hartwig, J. F.
Angew. Chem., Int. Ed. 1998, 37, 2046–2067. (h) Wolfe, J. P.;
Wagaw, S.; Marcoux, J.-F.; Buchwald, S. L. Acc. Chem. Res.
1998, 31, 805–818.
(3) (a) Ranu, B. C.; Saha, A; Jana, R. AdV. Synth. Catal. 2007,
349, 2690–2696. (b) Louie, J.; Hartwig, J. F. J. Am. Chem.
Soc. 1995, 117, 11598–11599. (c) Ferna´ndez-Rodr´ıguez,
M. A.; Shen, Q.; Hartwig, J. F. J. Am. Chem. Soc. 2006, 128,
2180–2184. (d) Kondo, T.; Mitsudo, T.-A. Chem. ReV. 2000,
100, 3205–3220. (e) Bates, C. G.; Gujadhur, R. K.; Venka-
taraman, D. Org. Lett. 2002, 4, 2803–2806. (f) Bates, C. G.;
Saejueng, P.; Doherty, M. Q.; Venkataraman, D. Org. Lett.
2004, 6, 5005–5008. (g) Taniguchi, N. J. Org. Chem. 2004,
69, 6904–6906. (h) Ley, S. V.; Thomas, A. W. Angew. Chem.,
Int. Ed. 2003, 42, 5400–5449. (i) Murata, M.; Buchwald, S. L.
Tetrahedron 2004, 60, 7397–7403. (j) Wong, Y.-C.; Jayanth,
T. T.; Cheng, C.-H. Org. Lett. 2006, 8, 5613–5616. (k)
Sperotto, E.; van Klink, G. P. M.; de Vries, J. G.; van Koten, G.
J. Org. Chem. 2008, 73, 5625–5628. (l) Rout, L.; Sen, T. K.;
Punniyamurthy, T. Angew. Chem., Int. Ed. 2007, 46, 5583–
5586. (m) Correa, A.; Carril, M.; Bolm, C. Angew. Chem.,
Int. Ed. 2008, 47, 2880–2883. (n) Kwong, F. Y.; Buchwald,
S. L. Org. Lett. 2003, 4, 3517–3525. (o) Palomo, C.; Oiarbide,
M.; Lopez, R.; Gomez-Bengoa, E. Tetrahedron Lett. 2000,
41, 1283–1286. (p) Carril, M.; SanMartin, R.; Dom´ınguez,
E.; Tellitu, I. Chem.-Eur. J. 2007, 13, 5100–5105.
It is well-known that silica gel has mild Lewis acidity with
many reactive hydroxyl groups on the surface and has been
used as promoter in organic synthesis. We reasoned that silica
gel would be effective as promoter in the reaction process
because it may involve the formation of complex via
coordination of alkynyl moiety of 1 to hydrogen of silica
gel. The proposed tandem cyclization mechanism was
generally explained by generation of intermediate thiourea
at first via addition of amine 1 to isothiocyanate 2, and then
the sulfur atom in thiourea was regioselectively nucleophilic
attacked on the activated triple bond, giving rise to the
corresponding product.
In summary, we described herein the silica gel promoted
highly efficient, one-pot, tandem addition-cyclization
reactions of a series of 2-alkynylbenzenamines with
isothiocyanates for the synthesis of 2,4-dihydro-1H-
benzo[d][1,3]thiazines. The silica gel could be used several
times. The silica gel showed its important role in this
tandem addition-cyclization reaction. Easy work up,
inexpensive, ready availability of the promoter, metal- and
solvent-free conditions, and combinatorial format makes
the procedure an attractive alternative to the existing
methods for the synthesis of 2,4-dihydro-1H-benzo-
[d][1,3]thiazines.
Experimental Section
General Procedure for Preparation of 4-Benzylidene-
1H-benzo[d][1,3]thiazin-2(4H)-ylidene)benzenamine (3a).
A mixture of 2-alkynylbenzenamine 1a (0.20 mmol), isothio-
cyanate 2a (0.3 mmol, 1.5 equiv), and silica gel (200 mg,
surface area ) 200-300 m2/g, and pore size ) 50-75 µm)
was stirred at 80 °C. After completion of reaction as indicated
by TLC, the silica gel was filtered by EtOAc. Evaporation
of the solvent followed by purification on silica gel provided
1
the corresponding product 3a. Yield: 97%. H NMR (400
(4) (a) Besson, T.; Guillaumet, G.; Lamazzi, C.; Rees, C. W.
Synlett 1997, 704–706. (b) Besson, T.; Guillaumet, G.;
Lamazzi, C.; Rees, C. W.; Thiery, V. J. Chem. Soc., Perkin
Trans. 1998, 1, 4057–4059. (c) Besson, T.; Emayan, K.; Rees,
C. W. J. Chem. Soc., Chem Commun. 1995, 1419–1420. (d)
Besson, T.; Emayan, K.; Rees, C. W. J. Chem. Soc., Perkin
Trans. 1995, 1, 2097–2102. (e) Nishio, T. J. Org. Chem. 1997,
62, 1106–1111. (f) El-Desoky, S. I.; Kandeel, E. M.; Abd-
el-Rahman, A. H.; Schmidt, R. R. J. Heterocycl. Chem. 1999,
36, 153–160. (g) Hari, A.; Miller, B. L. Org. Lett. 2000, 2,
3667–3670. (h) Tarraga, A.; Molina, P.; Lopez, J. L. Tetra-
hedron Lett. 2000, 41, 4895–4897. (i) Morgenstern, O.;
Schuster, R.; Finke, M.; Richter, P. H. Pharmazie 1996, 51,
458–467.
MHz, CDCl3): δ 7.06 (t, J ) 7.6 Hz, 1H), 7.16 (s, 1H), 7.17
(t, J ) 7.6 Hz, 1H), 7.25 (d, J ) 6.0 Hz, 1H), 7.29-7.36
(m, 4H), 7.40-7.44 (m, 4H), 7.54 (d, J ) 8.0 Hz, 3H). 13
C
NMR (100 MHz, CDCl3): δ 120.2, 121.6, 123.5, 124.8,
124.9, 125.9, 126.7, 127.2, 127.7, 128.2, 128.9, 129.3, 129.6,
135.6, 139.9, 143.2, 147.6. MS (EI): m/z 328 (M+).
Compounds 3b-3p were prepared in the same manner.
For details, please see the Supporting Information.
Acknowledgment. We thank Professor Jie Wu for his
valuable advice during the course of this research. Financial
Supported from National Natural Science Foundation of