Diastereo- and Enantioselective Construction of γ-Butenolides
[2] For a review with regard to the butenolide synthesis from vi-
nylogous aldol reaction, see: G. Casiraghi, F. Zandari, G. Ap-
pendino, G. Rassu, Chem. Rev. 2000, 100, 1929–1972.
[3] For a review on butenolide synthesis from vinylogous Michael
reactions, see: J. Christoffers, Synlett 2001, 723–732, and refer-
ences cited therein.
[4] For recent examples on enantioselective vinylogous Michael re-
actions related to butenolide synthesis, see: a) S. P. Brown,
N. C. Goodwin, D. W. C. MacMillan, J. Am. Chem. Soc. 2003,
125, 1192–1194; b) H. Kitajima, K. Ito, T. Katsuki, Tetrahe-
dron 1997, 53, 17015–17028.
[5] For reviews with respect to the butenolide synthesis from the
corresponding vinylogous Mannich reaction, see: a) S. K. Bur,
S. F. Martin, Tetrahedron 2001, 57, 3221–3242, and references
cited therein; b) S. F. Martin, Acc. Chem. Res. 2002, 35, 895–
904.
[6] Reviews on other methods for the synthesis of γ-butenolides:
a) P. Langer, Synlett 2006, 3369–3381; b) G. Romeo, D. Ian-
nazzo, A. Piperno, R. Romeo, A. Corsaro, A. Rescifina, U.
Chiacchio, Mini-Rev. Org. Chem. 2005, 2, 59–77; c) M. Ito,
Pure Appl. Chem. 1991, 63, 13–22; d) R. Brückner, Curr. Org.
Chem. 2001, 5, 679–718; e) P. A. Jacobi, Adv. Heterocycl. Nat.
Prod. Synth. 1992, 2, 251–298.
6264; n) J.-M. Garnier, C. Anstiss, F. Liu, Adv. Synth. Catal.
2009, 351, 331–338; o) J.-M. Garnier, F. Liu, Org. Biomol.
Chem. 2009, 7, 1272–1275; p) H. Xiao, Z. Chai, C.-W. Zheng,
Y.-Q. Yang, W. Liu, J.-K. Zhang, G. Zhao, Angew. Chem. 2010,
122, 4569–4572; Angew. Chem. Int. Ed. 2010, 49, 4467–4470;
q) J.-J. Gong, T.-Z. Li, K. Pan, X.-Y. Wu, Chem. Commun.
2011, 47, 1491–1493; r) X. Y. Han, Y. Q. Wang, F. R. Zhong,
Y. X. Lu, J. Am. Chem. Soc. 2011, 133, 1726–1729.
[9]
C.-W. Cho, M. J. Krische, Angew. Chem. 2004, 116, 6857–6859;
Angew. Chem. Int. Ed. 2004, 43, 6689–6691.
[10]
For other reactions of allylic substitution of MBH adducts and
nucleophilic catalysis based on phosphane conjugate addition,
see: a) C.-W. Cho, J.-R. Kong, M. J. Krische, Org. Lett. 2004,
6, 1337–1339; b) L.-C. Wang, A. L. Luis, K. Agapiou, H.-Y.
Jang, M. J. Krische, J. Am. Chem. Soc. 2002, 124, 2402–2403;
c) P. K. Koech, M. J. Krische, J. Am. Chem. Soc. 2004, 126,
5350–5351; d) Y. Du, X. Han, X. Lu, Tetrahedron Lett. 2004,
45, 4967–4971; e) T.-Z. Zhang, L.-X. Dai, X.-L. Hou, Tetrahe-
dron: Asymmetry 2007, 18, 1990–1994; f) D. J. V. C. van Steenis,
T. Marcelli, M. Lutz, A. L. Spek, J. H. van Maarseveen, H.
Hiemstra, Adv. Synth. Catal. 2007, 349, 281–286; g) H. Park,
C.-W. Cho, M. J. Krische, J. Org. Chem. 2006, 71, 7892–7894.
For recent mechanistic studies on amine-catalyzed nucleophilic
substitutions of Baylis–Hillman acetates, see: M. Baidya, G. Y.
Remennikov, P. Mayer, H. Mayr, Chem. Eur. J. 2010, 16, 1365–
1371.
a) Y.-Q. Jiang, Y.-L. Shi, M. Shi, J. Am. Chem. Soc. 2008, 130,
7202–7203; b) H.-P. Deng, Y. Wei, M. Shi, Eur. J. Org. Chem.
2011, 1956–1960; c) Y.-L. Yang, C.-K. Pei, M. Shi, Org. Bi-
omol. Chem. 2011, 9, 3349–3358.
[11]
[12]
[13]
[7] For reviews on phosphane organocatalysis, see: a) D. S.
Glueck, Chem. Eur. J. 2008, 14, 7108–7117; b) G. C. Fu, Acc.
Chem. Res. 2006, 39, 853–860; c) J. L. Methot, W. R. Roush,
Adv. Synth. Catal. 2004, 346, 1035–1050; d) X. Lu, C. Zhang,
Z. Xu, Acc. Chem. Res. 2001, 34, 535–544; e) Y. Wei, M. Shi,
Acc. Chem. Res. 2010, 43, 1005–1018; f) A. Marinetti, A. Voitu-
riez, Synlett 2010, 174–194.
[8] For recent examples of phosphane catalyzed reactions, see: a)
J. E. Wilson, G. C. Fu, Angew. Chem. 2006, 118, 1454–1457;
Angew. Chem. Int. Ed. 2006, 45, 1426–1429; b) Z. Lu, S. Zheng,
X. Lu, Org. Lett. 2008, 10, 3267–3270; c) X.-F. Zhu, J. Lan, O.
Kwon, J. Am. Chem. Soc. 2003, 125, 4716–4717; d) V. Srira-
murthy, G. A. Barcan, O. Kwon, J. Am. Chem. Soc. 2007, 129,
12928–12929; e) Y. S. Tran, O. Kwon, J. Am. Chem. Soc. 2007,
129, 12632–12633. For recent reports of chiral bifunctional
phosphane organocatalyzed asymmetric reactions, see: f) K.
Matsui, S. Takizawa, H. Sasai, Synlett 2006, 761–763; g) B. J.
Cowen, S. J. Miller, J. Am. Chem. Soc. 2007, 129, 10988–10989;
h) M.-J. Qi, T. Ai, M. Shi, G. Li, Tetrahedron 2008, 64, 1181–
1186; i) T. Kano, Y. Yamaguchi, O. Tokuda, K. Maruoka, J.
Am. Chem. Soc. 2005, 127, 16408–16409; j) Y.-Q. Fang, E. N.
Jacobsen, J. Am. Chem. Soc. 2008, 130, 5660–5661; k) Z.-Y.
Lei, X.-G. Liu, M. Shi, M. Zhao, Tetrahedron: Asymmetry
2008, 19, 2058–2062; l) X. T. Meng, Y. Huang, R. Y. Chen,
Chem. Eur. J. 2008, 14, 6852–6856; m) K. Yuan, L. Zhang, H.-
L. Song, Y. Hu, X.-Y. Wu, Tetrahedron Lett. 2008, 49, 6262–
H.-L. Cui, J.-R. Huang, J. Lei, Z.-F. Wang, S. Chen, L. Wu,
Y.-C. Chen, Org. Lett. 2010, 12, 720–723.
[14] For selected reviews on proline-catalyzed reactions, see: a) B.
List, Tetrahedron 2002, 58, 5573–5590; b) M. Movassaghi,
E. N. Jacobsen, Science 2002, 298, 1904–1905; c) W. Notz, F.
Tanaka, C. F. Barbas III, Acc. Chem. Res. 2004, 37, 580–591.
[15] H.-P. Deng, Y. Wei, M. Shi, Adv. Synth. Catal. 2009, 351, 2897–
2902.
[16] G.-N. Ma, S.-H. Cao, M. Shi, Tetrahedron: Asymmetry 2009,
20, 1086–1092.
[17] The four limiting TSs described here are similar to those
studied in the vinylogous Mannich reaction, see: S. K. Bur,
S. F. Martin, Org. Lett. 2000, 2, 3445–3447.
[18] a) M. Shi, J.-K. Jiang, C.-Q. Li, Tetrahedron Lett. 2002, 43,
127–129; b) M. Shi, C.-Q. Li, J.-K. Jiang, Chem. Commun.
2001, 833–834.
Received: May 19, 2011
Published Online: August 5, 2011
Eur. J. Org. Chem. 2011, 5146–5155
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
5155