C O M M U N I C A T I O N S
Scheme 1. A Plausible Reaction Mechanism
Table 2. Screening of Water Loading on the Allylic Substitution of
MBH Acetate 1a with 2 To Form γ-Butenolide 3a in the Presence
of L
L (20 mol %)
1a
+
2 3a
(1.0 equiv)
(x equiv)PhMe, H2O, 48 h, rt(dr>95:5)
entry
catalyst
H2O (equiv)
2 (equiv)
time (h)
yield (%)a
ee (%)b
1
2
3
4
5
6
7
L2
L2
L2
L2
L2
L2
L1
L3
L3
L4
L5
0.1
1
3
6
6
10
6
6
6
6
2.0
2.0
2.0
2.0
2.5
2.5
2.5
2.5
2.5
2.5
2.5
48
48
48
48
48
48
48
36
36
48
72
91
94
94
46
94
60
50
98
94
57
25
65
81
88
94
94
94
25
94
94
8
9c
10
11
29
-55
6
to optically active γ-butenolides 3 under mild conditions. Good to
excellent yields and ee’s have been achieved by using water as a
coadditive. Further efforts are in progress regarding the scope and
mechanistic details.
a Isolated yields. b Determined by chiral HPLC. c 10 mol% of catalyst
was added.
Table 3. Chiral Phosphine L3-Catalyzed Allylic Substitution of
Various MBH Acetates 1 with 2
Acknowledgment. We thank the Shanghai Municipal Com-
mittee of Science and Technology (04JC14083, 06XD14005),
Chinese Academy of Sciences, and the National Natural Science
Foundation of China for financial support (20472096, 20672127,
and 20732008).
Supporting Information Available: 13C and 1H NMR spectroscopic
and analytic data for 3 and X-ray crystal data of 3d as well as chiral
HPLC traces. This material is available free of charge via the Internet
absolute
configuration
entry
R1
R2
time (h)
yield (%)a
ee (%)b
1
2
3
4
5
6
p-MeC6H4
m-MeC6H4
p-BrC6H4
p-ClC6H4
m-ClC6H4
o-ClC6H4
p-NO2C6H4 Me
C3H7
C6H5
Me
Me
Me
Me
Me
Me
36
36
24
24
24
24
24
96
72
72
72
3b: 94
3c: 81
3d: 85
3e: 89
3f: 95
3g: 89
3h: 98
3i: 60
3j: 98
3k: 85
3l: 45
96
95
95
95
94
94
91
71
91
91
84
S, R
S, R
S, R
S, R
S, R
S, R
S, R
S, R
S, R
S, R
-
References
(1) Selected reviews on the synthesis of γ-butenolides: (a) Langer, P. Synlett
2006, 3369–3381. (b) Romeo, G.; Iannazzo, D.; Piperno, A.; Romeo, R.;
Corsaro, A.; Rescifina, A.; Chiacchio, U. Mini-ReV. Org. Chem. 2005, 2,
59–77. (c) Ito, M. Pure Appl. Chem. 1991, 63, 13–22. (d) Bruckner, R.
Curr. Org. Chem. 2001, 5, 679–718. (e) Jacobi, P. A. AdV. Heterocycl.
Nat. Prod. Synth. 1992, 2, 251–98.
(2) (a) Cho, C.-W.; Krische, M. J. Angew. Chem., Int. Ed. 2004, 43, 6689. (b)
Cho, C.-W.; Kong, J.-R.; Krische, M. J. Org. Lett. 2004, 6, 1337. (c) Wang,
L.-C.; Luis, A. L.; Agapiou, K.; Jang, H.-Y.; Krische, M. J. J. Am. Chem.
Soc. 2002, 124, 2402. (d) Koech, P. K.; Krische, M. J. J. Am. Chem. Soc.
2004, 126, 5350.
(3) Synthesis of these chiral phosphine ligands: Sumi, K.; Ikariya, T.; Noyori,
R. Can. J. Chem. 2000, 78, 698–703.
7
8c
9
Me
Et
10
11
p-NO2C6H4 Et
C6H5 OMe
a Isolated yields. b Determined by chiral HPLC. c In the presence of
L3 (25 mol %).
Their structures were determined by 1H and 13C NMR spec-
troscopy and HRMS or microanalyses, and ee’s were analyzed by
chiral HPLC (see Supporting Information). The absolute configu-
ration of 3 was determined as S,R-configuration by X-ray diffraction
of 3d containing a bromine atom on the benzene ring.7 The CIF
data of 3d are presented in the Supporting Information.8
A plausible mechanism for this asymmetric reaction is outlined
in Scheme 1. As proposed by Krische,2 the treatment of MBH
acetate 1 with L3 produces an electrophile-nucleophile ion pair,
the enone intermediate A; this intermediate is stabilized by an
intramolecular H-bonding.9 The endo-selective Diels-Alder cy-
cloaddition of the siloxy furan ate complex with enone A affords
intermediate B followed by subsequent Grob-type fragmentation
to give γ-butenolide 3 (Scheme 1). This Diels-Alder mechanism
has been originally proposed by Krische and co-worker.2 Although
water effect cannot be completely clarified at the present stage, it
is possible for water to assist the Grob-type fragmentation through
H-bonding and the formation of a pentacoordinated silicon inter-
mediate B.10
(4) For reviews, see: (a) Lu, X.; Zhang, C.; Xu, Z. Acc. Chem. Res. 2001, 34,
535. (b) Methot, J. L.; Roush, W. R. AdV. Synth. Catal. 2004, 346, 1035.
(c) Tran, Y. S.; Kwon, O. J. Am. Chem. Soc. 2007, 129, 12632–12633.
Selected papers on the chiral phosphines catalyzed asymmetric reactions: (d)
Zhu, G.; Chen, Z.; Jiang, Q.; Xiao, D.; Cao, P.; Zhang, X. J. Am. Chem.
Soc. 1997, 119, 3836–3837. (e) Wilson, J. E.; Fu, G. C. Angew. Chem.,
Int. Ed. 2006, 45, 1426. (f) Wallace, D. J.; Sidda, R. L.; Reamer, R. A. J.
Org. Chem. 2007, 72, 1051. Selected papers on the chiral bifunctional
phosphines catalyzed asymmetric reactions: (g) Shi, M.; Chen, L.-H.; Li,
C.-Q. J. Am. Chem. Soc. 2005, 127, 3790. (h) Matsui, K.; Takizawa, S.;
Sasai, H. Synlett 2006, 5, 761–763. (i) Cowen, B. J.; Miller, S. J. J. Am.
Chem. Soc. 2007, 129, 10988–10989. (j) Qi, M.-J.; Ai, T.; Shi, M.; Li, G.
Tetrahedron 2008, 64, 1181–1186. (k) Li, G.; Wei, H.-X.; Gao, J.; Caputo,
T. D. Tetrahedron Lett. 2000, 41, 1–5. (l) Kano, T.; Yamaguchi, Y.; Tokuda,
O.; Maruoka, K. J. Am. Chem. Soc. 2005, 127, 16408. (m) Fang, Y.-Q.;
Jacobsen, E. N. J. Am. Chem. Soc. 2008, 130, 5660.
(5) For a trace amount of water on the influence of phosphine-catalyzed [3 +
2] cycloaddition, see: Xia, Y.; Liang, Y.; Chen, Y.; Wang, M.; Jiao, L.;
Huang, F.; Liu, S.; Li, Y.; Yu, Z.-X. J. Am. Chem. Soc. 2007, 129, 3470.
(6) Also see: (a) Zhu, X.-F.; Henry, C.-E.; Kwon, O. J. Am. Chem. Soc. 2007,
129, 6722. (b) Mercier, E.; Fonovic, B.; Henry, C.; Kwon, O.; Dudding,
T. Tetrahedron Lett. 2007, 48, 3617. (c) Dudding, T.; Kwon, O.; Mercier,
E. Org. Lett. 2006, 8, 3643.
(7) Kuroda, R.; Mason, S. F. J. Chem. Soc., Dalton Trans. 1979, 727.
(8) The crystal data of 3d have been deposited in CCDC with number 675586.
(9) This active intermediate could be clearly observed in the 31P NMR spectrum
(see the Supporting Information).
(10) (a) Chuit, C.; Corriu, R. J. P.; Reye, C.; Young, J. C. Chem. ReV. 1993,
93, 1371. (b) Kira, M.; Sato, K.; Sakurai, H. J. Am. Chem. Soc. 1990, 112,
257.
In conclusion, we have established an efficient multifunctional
chiral phosphine L2 or L3-catalyzed allylic substitutions of MBH
acetates 1 with 2-trimethylsilyloxy furan 2 to provide an easy access
JA802422D
9
J. AM. CHEM. SOC. VOL. 130, NO. 23, 2008 7203