ARTICLES
21. Noonan, G. M., Fuentes, J. A., Cobley, C. J. & Clarke, M. L. An asymmetric
hydroformylation catalyst that delivers branched aldehydes from alkyl alkenes.
Angew. Chem. Int. Ed. 51, 2477–2480 (2012).
22. Klosin, J. & Landis, C. R. Ligands for practical rhodium-catalyzed asymmetric
hydroformylation. Acc. Chem. Res. 40, 1251–1259 (2007).
23. Cavinato, G. & Toniolo, L. Metal in organic synthesis. VI. The solvent effect on
the hydrocarbonalkoxylation of propene promoted by a [PdCl2(PPh3)2]−PPh3
catalyst precursor. J. Mol. Catal. 10, 161–170 (1981).
24. Rucklidge, A. J., Morris, G. E. & Cole-Hamilton, D. J. Methoxycarbonylation of
vinyl acetate catalysed by palladium complexes of bis
(ditertiarybutylphosphinomethyl)benzene and related ligands. Chem. Commun.
1176–1178 (2005).
25. Shuklov, I. A. et al. Promoters for Pd-catalyzed methoxycarbonylation of vinyl
acetate. Arkivoc 66–75 (2012).
26. Frew, J. J. R., Clarke, M. L., Mayer, U., Van Rensburg, H. & Tooze, R. P.
Palladium complexes of new bulky fluorinated diphosphines give particularly
active and regioselective catalysts for hydroxycarbonylation of styrene. Dalton
Trans. 1976–1978 (2008).
27. Fuentes, J. A., Slawin, A. M. Z. & Clarke, M. L. Application of palladium (trioxo-
adamantyl cage phosphine)chloride complexes as catalysts for the
alkoxycarbonylation of styrene; Pd catalysed tert-butoxycarbonylation of
styrene. Catal. Sci. Technol. 2, 715–718 (2012).
Conclusion
In conclusion, we have discovered a PdX2/N-phenylpyrrole
phosphine-type catalyst system for the regioselective Markovnikov
alkoxycarbonylation reactions of alkenes. Industrially important
aliphatic olefins without further functional groups can be alkoxy-
carbonylated selectively to the branched products. The general
applicability is demonstrated in 17 examples (71–99% yield, 49–91%
branched selectivity). Furthermore, diverse alcohols are also well
tolerated (15 examples, 20–99% yield, 65–85% branched selectivity).
The applicability of this methodology is highlighted further by the
employment of an industrial C4 mixture in the synthesis of phenethyl
2-methylbutyrate, a fruity fragrance. On the basis of density func-
tional theory (DFT) computation, including dispersion correction,
the experimentally observed branched selectivity should be deter-
mined by the enhanced thermodynamic stability of the corresponding
isopropyl [L2Pd(CO)(isopropyl)]+ complex over the propyl
[L2Pd(CO)(propyl)]+ complex. Attempts with further ligand
modifications are currently underway in our research group.
28. Grabulosa, A., Frew, J. J. R., Fuentes, J. A., Slawin, A. M. Z. & Clarke, M. L.
Palladium complexes of bulky ortho-trifluoromethylphenyl-substituted
phosphines: unusually regioselective catalysts for the hydroxycarbonylation and
alkoxycarbonylation of alkenes. J. Mol. Catal. A 330, 18–25 (2010).
29. Ooka, H., Inoue, T., Itsuno, S. & Tanaka, M. Highly active and selective
palladium catalyst for hydroesterification of styrene and vinyl acetate promoted
by polymeric sulfonic acids. Chem. Commun. 1173–1175 (2005).
30. Liu, J., Liu, Q., Franke, R., Jackstell, R. & Beller, M. Ligand-controlled
palladium-catalyzed alkoxycarbonylation of allenes: regioselective synthesis
of α,β- and β,γ-unsaturated esters. J. Am. Chem. Soc. 137, 8556–8563 (2015).
31. Konrad, T. M., Durrani, J. T., Cobley, C. J. & Clarke, M. L. Simultaneous control
of regioselectivity and enantioselectivity in the hydroxycarbonylation and
methoxycarbonylation of vinyl arenes. Chem. Commun. 49, 3306–3308 (2013).
32. Guiu, E. et al. Electronic effect of diphosphines on the regioselectivity of the
palladium-catalyzed hydroesterification of styrene. Organometallics 25,
3102–3104 (2006).
33. Lee, C. W. & Alper, H. Hydroesterification of olefins catalyzed by Pd(OAc)2
immobilized on montmorillonite. J. Org. Chem. 60, 250–252 (1995).
34. Alper, H., Woell, J. B., Despeyroux, B. & Smith, D. J. H. The regiospecific
palladium catalysed hydrocarboxylation of alkenes under mild conditions.
Chem. Commun. 1270–1271 (1983).
35. Williams, D. B. G., Shaw, M. L., Green, M. J. & Holzapfel, C. W. Aluminum
triflate as a highly active and efficient nonprotic cocatalyst in the
palladium-catalyzed methoxycarbonylation reaction. Angew. Chem. Int. Ed. 47,
560–563 (2008).
36. Jørgensen, M., Lee, S., Liu, X., Wolkowski, J. P. & Hartwig, J. F. Efficient synthesis
of α-aryl esters by room-temperature palladium-catalyzed coupling of aryl
halides with ester enolates. J. Am. Chem. Soc. 124, 12557–12565 (2002).
37. Wender, P. A., Koehler, M. F. T. & Sendzik, M. A new synthetic approach
to the C ring of known as well as novel bryostatin analogues. Org. Lett. 5,
4549–4552 (2003).
38. Crimmins, M. T., Carroll, C. A. & Wells, A. J. Pinacol-type rearrangements of
intramolecular photocycloadducts: application of the 2,2-dimethyl-4-pentenoate
protecting group. Tetrahedron Lett. 39, 7005–7008 (1998).
39. Gauthier, D., Lindhardt, A. T., Olsen, E. P. K., Overgaard, J. & Skrydstrup, T.
In situ generated bulky palladium hydride complexes as catalysts for the efficient
isomerization of olefins. Selective transformation of terminal alkenes to
2-alkenes. J. Am. Chem. Soc. 132, 7998–8009 (2010).
40. Larionov, E., Lin, L., Guénée, L. & Mazet, C. Scope and mechanism in
palladium-catalyzed isomerizations of highly substituted allylic, homoallylic,
and alkenyl alcohols. J. Am. Chem. Soc. 136, 16882–16894 (2014).
41. Grushin, V. V. Hydrido complexes of palladium. Chem. Rev. 96,
2011–2034 (1996).
Received 12 November 2015; accepted 30 June 2016;
published online 5 September 2016
References
1. Trost, B. M. Atom economy—a challenge for organic synthesis:
homogeneous catalysis leads the way. Angew. Chem. Int. Ed. Engl. 34,
259–281 (1995).
2. Markownikoff, W. I. Ueber die Abhängigkeit der verschiedenen Vertretbarkeit
des Radicalwasserstoffs in den isomeren Buttersäuren. Justus Liebigs Ann. Chem.
153, 228–259 (1870).
3. Huang, L., Arndt, M., Gooßen, K., Heydt, H. & Gooßen, L. J. Late transition
metal-catalyzed hydroamination and hydroamidation. Chem. Rev. 115,
2596–2697 (2015).
4. Müller, T. E., Hultzsch, K. C., Yus, M., Foubelo, F. & Tada, M. Hydroamination:
direct addition of amines to alkenes and alkynes. Chem. Rev. 108,
3795–3892 (2008).
5. Whittlesey, M. K. in Comprehensive Coordination Chemistry II (eds McCleverty,
J. A. & Meyer, T. J.) 265–304 (Pergamon, 2003).
6. Müller, T. E. & Beller, M. Metal-initiated amination of alkenes and alkynes.
Chem. Rev. 98, 675–704 (1998).
7. Beller, M., Seayad, J., Tillack, A. & Jiao, H. Catalytic Markovnikov and anti-
Markovnikov functionalization of alkenes and alkynes: recent developments and
trends. Angew. Chem. Int. Ed. 43, 3368–3398 (2004).
8. Mahatthananchai, J., Dumas, A. M. & Bode, J. W. Catalytic selective synthesis.
Angew. Chem. Int. Ed. 51, 10954–10990 (2012).
9. Weissermel, K. & Arpe, H.-J. Industrial Organic Chemistry 127–144
(Wiley-VCH, 2008).
10. Kégl, T. in Modern Carbonylation Methods (ed Kollár, L.) 161–198
(Wiley-VCH, 2008).
11. Cornils, B. & Hermann, W. A. Applied Homogeneous Catalysis with
Organometallic Compounds (Wiley-VCH, 2008).
12. El Ali, B. & Alper, H. in Handbook of Organopalladium Chemistry for Organic
Synthesis (ed Negishi, E.-I.) 2333–2349 (John Wiley & Sons, 2003).
13. Franke, R., Selent, D. & Börner, A. Applied hydroformylation. Chem. Rev. 112,
5675–5732 (2012).
14. Ali, B. E. & Alper, H. in Transition Metals for Organic Synthesis (eds Beller, M. &
Bolm, C.) 113–132 (Wiley-VCH, 2008).
15. Beller, M., Cornils, B., Frohning, C. D. & Kohlpaintner, C. W. Progress in
hydroformylation and carbonylation. J. Mol. Catal. A 104, 17–85 (1995).
16. Jimenez Rodriguez, C., Foster, D. F., Eastham, G. R. & Cole-Hamilton, D. J.
Highly selective formation of linear esters from terminal and internal alkenes
catalysed by palladium complexes of bis-(di-tert-butylphosphinomethyl)
benzene. Chem. Commun. 1720–1721 (2004).
17. Kiss, G. Palladium-catalyzed Reppe carbonylation. Chem. Rev. 101,
3435–3456 (2001).
18. Clegg, W. et al. Highly active and selective catalysts for the production of methyl
propanoate via the methoxycarbonylation of ethene. Chem. Commun.
1877–1878 (1999).
42. Negishi, E.-I. in Handbook of Organopalladium Chemistry for Organic Synthesis
(ed Negishi, E.-I.) 2783–2788 (John Wiley & Sons, 2003).
43. Elali, B. & Alper, H. Formic-acid palladium acetate-1,4-bis(diphenylphosphino)
butane—an effective catalytic system for regioselective hydrocarboxylation of
simple and functionalized olefins. J. Mol. Catal. 77, 7–13 (1992).
44. Pugh, R. I., Drent, E. & Pringle, P. G. Tandem isomerisation–carbonylation
catalysis: highly active palladium(II) catalysts for the selective
19. Jamie, T. & Durrani, M. L. C. in Stereoselective Synthesis of Drugs and Natural
Products (eds Andrushko, N. & Andrushko, V.) Part 2, Ch. 14 (John Wiley &
Sons, 2013).
methoxycarbonylation of internal alkenes to linear esters. Chem. Commun.
1476–1477 (2001).
45. Surry, D. S. & Buchwald, S. L. Dialkylbiaryl phosphines in Pd-catalyzed
amination: a user’s guide. Chem. Sci. 2, 27–50 (2011).
46. Zapf, A. et al. Practical synthesis of new and highly efficient ligands for the
Suzuki reaction of aryl chlorides. Chem. Commun. 38–39 (2004).
20. Noonan, G. M., Cobley, C. J., Mahoney, T. & Clarke, M. L. Rhodium/
phospholane–phosphite catalysts give unusually high regioselectivity in the
enantioselective hydroformylation of vinyl arenes. Chem. Commun. 50,
1475–1477 (2014).
7
© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.