10.1002/cssc.201900358
ChemSusChem
COMMUNICATION
Finally, a scale-up experiment performed on compound 1a (1.25
g, 6.0 mmol) in water delivered the reduced α-methoxy β-
hydroxyester 2a in 88% yield and the same high level of
stereoselectivity as on a 0.6 mmol scale, demonstrating the
usefulness of the procedure.
ParisTech, Paris) and to C. Fosse for the mass spectrometry
analysis (Chimie ParisTech, Paris).
Keywords: asymmetric catalysis • hydrogen transfer • reduction
• rhodium • water
In conclusion, we have prepared a new rhodium catalyst having
an
electron-deficient
diamine
ligand
carrying
a
[1]
a) H. C. Kolb, M. S. VanNieuwenhze, K. B. Sharpless, Chem. Rev.
1994, 94, 2483; b) Y. Shi, Acc. Chem. Res. 2004, 37, 488; c) T. Ikariya,
K. Murata, R. Noyori, Org. Biomol. Chem. 2006, 4, 393; d) G. Guillena,
C. Nájera, D. Ramón, Tetrahedron: Asymmetry 2007, 18, 2249; e) F.
Tanaka, C. F. Barbas III, in Enantioselective Organocatalysis, Reaction
and Experimental Procedures (Ed.: P. I. Dalko), Wiley-VCH, Weinheim,
2007, pp. 19–55; f) P. Jiao, M. Kawasaki, H. Yamamoto, Angew. Chem.
2009, 121, 3383; Angew. Chem. Int. Ed. 2009, 48, 3333.
pentafluorobenzenesulfonyl substituent. The novel fully
characterized Rh-complex is not sensitive to water or air, is
convenient to handle and was efficiently used for the asymmetric
transfer hydrogenation of α-methoxy β-keto esters with either
HCO2H/Et3N (5:2) at a low catalyst loading in an environmentally
sound solvent, 2-MeTHF, or with HCO2Na in water in open flask.
This catalytic atom-economical ATH reaction proceeds in water
[2]
a) S. E. Denmark, W.-J. Chung, Angew. Chem. 2008, 120, 1916;
Angew. Chem. Int. Ed. 2008, 47, 1890; b) S. E. Denmark, W.-J. Chung,
J. Org. Chem. 2008, 73, 4582; c) S. M. Lim, N. Hill, A. G. Myers, J. Am.
Chem. Soc. 2009, 131, 5763; d) K. M. Steward, J. S. Johnson, Org.
Lett. 2010, 12, 2864; e) S.-M. Son, H.-K. Lee, J. Org. Chem. 2013, 78,
8396; f) S.-M. Son, H.-K. Lee, J. Org. Chem. 2014, 79, 2666; g) N.
Alnafta, J. P. Schmidt, C. L. Nesbitt, C. S. P. McErlean, Org. Lett. 2016,
18, 6520; h) L. Fang, S. Liu, L. Han, H. Li, F. Zhao, Organometallics
2017, 36, 1217.
using
a
dynamic kinetic resolution process affording
monodifferentiated β-hydroxyester derivatives in high yields (up
to 98%), high levels of diastereoselection (up to >99:1), and
excellent ee values (up to >99%).
Experimental Section
[3]
a) R. Noyori, M. Tokunaga, M. Kitamura, Bull. Chem. Soc. Jpn. 1995,
68, 36; b) S. Caddick, K. Jenkins, Chem. Soc. Rev. 1996, 25, 447; c) R.
S. Ward, Tetrahedron: Asymmetry 1995, 6, 1475; d) R. Stürmer, Angew.
Chem. 1997, 109, 1221; Angew. Chem. Int. Ed. 1997, 36, 1173; e) M. T.
El Gihani, J. M. J. Williams, Curr. Opin. Chem. Biol. 1999, 3, 11; f) V.
Ratovelomanana-Vidal, J.-P. Genêt, Can. J. Chem. 2000, 851, 846; g)
F. F. Huerta, A. B. E. Minidis, J.-E. Bäckvall, Chem. Soc. Rev. 2001, 30,
321; h) K. Faber, Chem. Eur. J. 2001, 7, 5005; i) O. Pàmies, J.-E.
Bäckvall, Chem. Rev. 2003, 103, 3247; j) H. Pellissier, Tetrahedron
2003, 59, 8291; k) N. J. Turner, Curr. Opin. Chem. Biol. 2004, 8, 114; l)
E. Vedejs, M. Jure, Angew. Chem. 2005, 117, 4040; Angew. Chem. Int.
Ed. 2005, 44, 3974; m) B. Martín-Matute, J.-E. Bäckvall, Curr. Opin.
Chem. Biol. 2007, 11, 226; n) H. Pellissier, Tetrahedron 2008, 64,
1563; o) H. Pellissier, Tetrahedron 2011, 67, 3769; p) P.-G. Echeverria,
T. Ayad, P. Phansavath, V. Ratovelomanana-Vidal, Synthesis 2016, 48,
2523.
General procedure for the asymmetric transfer hydrogenation of
compounds 1a-1m in 2-MeTHF: a round-bottomed tube equipped with
a balloon of argon was charged with α-methoxyl β-keto ester 1 (0.8
mmol) and the rhodium complex (R,R)-E (4.0 µmol, 0.5 mol%). The
solids were subjected to three vacuum/argon cycles before anhydrous 2-
MeTHF (4.0 mL) was added. The mixture was stirred at rt for 3-5 min,
and the tube was transferred into
a 30 °C oil bath, before the
HCO2H/Et3N (5:2) azeotropic mixture (134 µL, 1.6 mmol, 2.0 equiv) was
added dropwise. After complete consumption of the starting material
(monitored by TLC or 1H NMR), the reaction mixture was concentrated
under vacuum, quenched with sat. NaHCO3, and extracted with CH2Cl2.
The combined organic layers were washed with brine, dried (MgSO4),
filtered and concentrated under vacuum. The conversion and
diastereomeric ratio were determined by 1H NMR analysis of the crude
product. After filtration of the crude product on silica gel, the enantiomeric
excess was determined by HPLC analysis (CHIRALPAK IA, IB, IC or IE
column).
[4]
a) G. Zassinovich, G. Mestroni, S. Gladiali, Chem. Rev. 1992, 92, 1051;
b) C. F. de Graauw, J. A. Peters, H. van Bekkum, J. Huskens,
Synthesis 1994, 1007; c) R. Noyori, S. Hashiguchi, Acc. Chem. Res.
1997, 30, 97; d) M. J. Palmer, M. Wills, Tetrahedron: Asymmetry 1999,
10, 2045; e) O. Pàmies, J.-E. Bäckvall, Chem. Eur. J. 2001, 7, 5052; f)
K. Everaere, A. Mortreux, J.-F. Carpentier, Adv. Synth. Catal. 2003,
345, 67; g) S. Gladiali, E. Alberico, Chem. Soc. Rev. 2006, 35, 226; h)
S. M. Joseph, J. S. Samec, J.-E. Bäckvall, P. G. Andersson, P. Brandt,
Chem. Soc. Rev. 2006, 35, 237; i) Ikariya, T.; Blacker, A. J. Acc. Chem.
Res. 2007, 40, 1300; j) A. J. Blacker, in Handbook of Homogeneous
Hydrogenation (Eds.: J. G. de Vries, C. J. Elsevier), Wiley-VCH,
Weinheim, 2007, pp. 1215–1244; k) C. Wang, X. Wu, J. Xiao, Chem.
Asian J. 2008, 3, 1750; l) T. Ikariya, Bull. Chem. Soc. Jpn. 2011, 84, 1;
m) A. Bartoszewicz, N. Ahlsten, B. Martín-Matute, Chem. Eur. J. 2013,
19, 7274; n) T. Slagbrand, H. Lundberg, H. Adolfsson, Chem. Eur. J.
2014, 20, 16102; o) B. Štefane, F. Požgan, Catal. Rev. 2014, 56, 82; p)
D. Wang, D. Astruc, Chem. Rev. 2015, 115, 6621; q) F. Foubelo, C.
Nájera, M. Yus, Tetrahedron: Asymmetry 2015, 26, 769; r) T. Ayad, P.
Phansavath, V. Ratovelomanana-Vidal, Chem. Rec. 2016, 16, 2754; s)
Matsunami, A.; Kayaki, Y. Tetrahedron Lett. 2018, 59, 504.
General procedure for the asymmetric transfer hydrogenation of
compounds 1a-1m in water: a round-bottomed tube was charged with
α-methoxyl β-keto ester 1 (0.6 mmol), sodium formate (3.0 mmol),
cetyltrimethylammonium bromide (0.12 mmol, 20 mol%), the rhodium
complex (R,R)-E (3.0 µmol, 0.5 mol%), water (1.5 mL), and the mixture
was stirred at 40 °C. After complete consumption of the starting material
(monitored by TLC), the reaction mixture was extracted with 2-MeTHF,
the combined organic layers were washed with brine, dried (MgSO4),
filtered and concentrated under vacuum. The conversion and
diastereomeric ratio were determined by 1H NMR analysis of the crude
product. After filtration of the crude product on silica gel, the enantiomeric
excess was determined by HPLC analysis (CHIRALPAK IA, IB, IC or IE
column).
Acknowledgements
[5]
a) D. Cartigny, K. Püntener, T. Ayad, M. Scalone, V. Ratovelomanana-
Vidal, Org. Lett. 2010, 12, 3788; b) L. Monnereau, D. Cartigny, M.
Scalone, T. Ayad, V. Ratovelomanana-Vidal, Chem. Eur. J. 2015, 21,
11799.
This work was supported by the Ministère de l'Education
Nationale, de l'Enseignement Supérieur et de la Recherche
(MENESR) and the Centre National de la Recherche
Scientifique (CNRS). We acknowledge the China Scholarship
Council (CSC) for a grant to B. H. and L.-S. Z. B. H. and L.-S. Z.
contributed equally. We thank C. Férard for technical assistance.
We are grateful to G. Gontard for the X-ray analysis (Sorbonne
Université, Paris), to M.-N. Rager for the NMR analysis (Chimie
[6]
[7]
J. Li, Z. Lin, Q. Huang, Q. Wang, L. Tang, J. Zhu, J. Deng, Green
Chem. 2017, 19, 5367.
a) M. E. Eissen, J. O. Metzger, E. Schmidt, U. Schneidewind, Angew.
Chem. 2002, 114, 402; Angew. Chem. Int. Ed. 2002, 41, 414; b) P. T.
Anastas, J. C. Warner, Green Chemistry: Theory and Practice, Oxford
University Press, New York, 1998, p. 15.
This article is protected by copyright. All rights reserved.