ORGANIC
LETTERS
2008
Vol. 10, No. 13
2681-2683
Nickel-Catalyzed Carboxylation of
Organozinc Reagents with CO2
Hidenori Ochiai, Minsul Jang, Koji Hirano, Hideki Yorimitsu,* and
Koichiro Oshima*
Department of Material Chemistry, Graduate School of Engineering, Kyoto UniVersity,
Kyoto-daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
yori@orgrxn.mbox.media.kyoto-u.ac.jp; oshima@orgrxn.mbox.media.kyoto-u.ac.jp
Received April 3, 2008
ABSTRACT
An efficient nickel catalyst system for the carboxylation of organozinc reagents with CO2 under very mild conditions has been developed. The
catalyst system complements the conventional methods and enables the direct synthesis of various saturated carboxylic acid derivatives
from the corresponding alkylzinc reagents and CO2.
Fixation of carbon dioxide has received significant attention
from the viewpoint of organic synthesis as well as C1
chemistry that utilizes compounds containing only one carbon
since CO2 is a cheap and abundant source of carbon.1
Reaction of carbon nucleophiles with CO2 is one of the most
fundamental processes for CO2 fixation and is an attractive
way to synthesize carboxylic acids. Highly reactive orga-
nometallic reagents such as organolithiums and Grignard
reagents can react with the relatively unreactive CO2.
Organocopper and -manganese reagents are known to react
with CO2.2 The reactions mentioned above are restricted in
scope and generality, and the development of new methods
for carboxylation of much milder organometallic reagents
with CO2 is strongly desired. In 2006, Iwasawa succeeded
in rhodium-catalyzed carboxylation of aryl- and alkenylbo-
ronic esters with CO2.3 While the catalytic reaction provided
an efficient route to a variety of benzoic and cinnamic acid
derivatives, the corresponding alkylboronic esters could not
participate in the reaction. Catalytic synthesis of saturated
aliphatic carboxylic acids under mild conditions has still
remained a challenge. Herein, we report nickel-catalyzed
carboxylation of organozinc reagents with CO2. The catalyst
system allows alkylzinc reagents to serve as carbon nucleo-
philes toward CO2, providing an efficient synthesis of various
saturated carboxylic acid derivatives directly from CO2 and
the corresponding alkylmetals of mild reactivity.4
Treatment of a solution of hexylzinc iodide-lithium
chloride complex (1a) in THF5,6 with CO2 (1 atm, balloon)
in the presence of 5 mol % of Ni(acac)2 and 10 mol % of
P(c-C6H11)3 in THF at room temperature for 3 h afforded
heptanoic acid (2a) in 70% yield (Table 1, entry 1).7 The
procedure was so simple that the catalytic reaction was
practical. Interestingly, the addition of lithium chloride was
(1) Reviews: (a) Behr, A. Angew. Chem., Int. Ed. Engl. 1988, 27, 661–
678. (b) Braunstein, P.; Matt, D.; Nobel, D. Chem. ReV. 1988, 88, 747–
764. (c) Aresta, M.; Armor, J. N.; Barteau, M. A.; Beckman, E. J.; Bell,
A. T.; Bercaw, J. E.; Creutz, C.; Dinjus, E.; Dixon, D. A.; Domen, K.;
Dubois, D. L.; Eckert, J.; Fujita, E.; Gibson, D. H.; Goddard, W. A.;
Goodman, D. W.; Keller, J.; Kubas, G. J.; Kung, H. H.; Lyons, J. E.; Manzer,
L. E.; Marks, T. J.; Morokuma, K.; Nicholas, K. M.; Periana, R.; Que, L.;
Rostrup-Nielson, J.; Sachtler, W. M. H.; Schmidt, L. D.; Sen, A.; Somorjai,
G. A.; Stair, P. C.; Stults, B. R.; Tumas, W. Chem. ReV. 2001, 101, 953–
996.
(3) Ukai, K.; Aoki, M.; Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2006,
128, 8706–8707.
(4) CO2 fixation through oxidative cyclization of CO2 and carbon-carbon
unsaturated molecules on Ni: (a) Mori, M.; Takimoto, M. In Modern
Organonickel Chemistry; Tamaru, Y., Ed.; Wiley-VCH: Weinheim, 2005;
Chapter 7, pp 205-223. (b) Mori, M. Eur. J. Org. Chem. 2007, 4981–
4993. (c) Louie, J.; Gibby, J. E.; Farnworth, M. V.; Tekavec, T. N. J. Am.
Chem. Soc. 2002, 124, 15188–15189. (d) Murakami, M.; Ishida, N.; Miura,
T. Chem. Commun. 2006, 643–645. (e) Murakami, M.; Ishida, N.; Miura,
T. Chem. Lett. 2007, 476–477. (f) Aoki, M.; Izumi, S.; Kaneko, M.; Ukai,
K.; Iwasawa, N. Org. Lett. 2007, 9, 1251–1253.
(2) Reactions of organocopper with CO2: (a) Normant, J. F.; Cahiez,
G.; Chuit, C.; Villieras, J. J. Organomet. Chem. 1973, 54, C53–C56.
Reactions of organomanganese with CO2: (b) Friour, G.; Cahiez, G.;
Alexakis, A.; Normant, J. F. Bull. Soc. Chim. Fr. II 1979, 515–517.
10.1021/ol800764u CCC: $40.75
Published on Web 06/04/2008
2008 American Chemical Society