2098
M. Radi et al. / Bioorg. Med. Chem. Lett. 22 (2012) 2094–2098
2. Cohen, J. Science 2001, 293, 1034.
In summary, the present manuscript describes the identifica-
3. (a) Cohen, J. Science 2008, 319, 143; (b) Arhel, N.; Kirchhoff, F. Biochim. Bioohys.
Acta 2010, 1802, 313.
tion of the first small molecules, specifically designed to interfere
with the RNA binding on hDDX3 by interacting with the closed
conformation of the enzyme. Biological studies on the synthesized
compounds allowed to discover the optimized derivatives 6 and 8,
which proved to inhibit both the helicase and ATPase activity of
DDX3 and to reduce viral replication in peripheral blood mononu-
clear cell (PBMC) cells infected with HIV-1. Although the
N,N0-diarylurea is a common scaffold of antitumor derivatives act-
ing both as kinase inhibitors (e.g., Sorafenib)26 or G-quadruplex
DNA intercalating agents,27 to the best of our knowledge this is
the first reported example of N,N0-diarylureas with antiviral activ-
ity. The results of this study lay the foundation for the develop-
ment of a new generation anti-HIV drugs targeting the DDX3
host factors. Such an approach might be, in principle, able to over-
come the problem of drug resistance associated with the common
antiviral therapies. In fact, contrary to viral enzymes, cellular pro-
teins have low mutation rates, thus substantially reducing the
probability of the generation of escape mutants. Furthermore,
while under the selective pressure of HAART, viral variants resis-
tant to drug inhibition are readily selected and passed to the prog-
eny virions, any mutation in a cellular enzyme which renders the
cell more susceptible to viral infection, will give no selective
advantage to the cell population and will be lost. Moreover, our ap-
proach is not aimed to disrupt the physical interaction between
DDX3 and HIV-1 Rev, but to inhibit the enzymatic activity of
hDDX3, essential to viral replication. In order for HIV-1 to over-
come the loss-of-function of this essential cellular cofactor, result-
ing from the chemical inhibition of its enzymatic activity, the virus
should establish a completely novel network of interactions,
involving another cofactor with the same function as DDX3. This,
in our opinion, would pose a very high genetic barrier to the devel-
opment of viral mutants resistant to hDDX3 inhibition. Further
studies are underway to better define the mechanism of action of
the identified hDDX3 inhibitors.
4. For reviews, see: (a) Garbelli, A.; Radi, M.; Falchi, F.; Beermann, S.; Zanoli, S.;
Manetti, F.; Dietrich, U.; Botta, M.; Maga, G. Curr. Med. Chem. 2011, 18, 3015; (b)
Schröder, M. Biochem. Soc. Trans. 2011, 39, 679.
5. Yedavalli, V. S.; Neuveut, C.; Chi, Y. H.; Kleiman, L.; Jeang, K. T. Cell 2004, 119,
381.
6. (a) Ishaq, M.; Hu, J.; Wu, X.; Fu, Q.; Yang, Y.; Liu, Q.; Guo, D. Mol. Biotechnol.
2008, 39, 231; (b) Lee, C. S.; Dias, A. P.; Jedrychowski, M.; Patel, A. H.; Hsu, J. L.;
Reed, R. Nucleic Acids Res. 2008, 36, 4708.
7. Maga, G.; Falchi, F.; Radi, M.; Botta, L.; Casaluce, G.; Bernardini, M.; Irannejad,
H.; Manetti, F.; Garbelli, A.; Zanoli, S.; Esté, J. A.; González, E.; Zucca, E.;
Paolucci, S.; Baldanti, F.; De Rijck, J.; Debyser, Z.; Botta, M. ChemMedChem 2011,
6, 1371.
8. Maga, G.; Falchi, F.; Gabelli, A.; Belfiore, A.; Witvrouw, M.; Manetti, F.; Botta, M.
J. Med. Chem. 2008, 51, 6635.
9. Yedavalli, V. S.; Zhang, N.; Cai, H.; Zhang, P.; Starost, M. F.; Hosmane, R. S.;
Jeang, K. T. J. Med. Chem. 2008, 51, 5043.
10. Cordin, O.; Banroques, J.; Tanner, N. K.; Linder, P. Gene 2006, 367, 17.
11. Kwong, A. D.; Rao, B. G.; Jeang, K. T. Nat. Rev. Drug. Disc. 2005, 4, 845.
12. Högbom, M.; Collins, R.; Van Den Berg, S.; Jenvert, R. M.; Karlberg, T.;
Kotenyova, T.; Flores, A.; Karlsson Hedestam, G. B.; Holmberg Schiavone, L. J.
Mol. Biol. 2007, 372, 150.
13. (a) Radi, M.; Maga, G.; Alongi, M.; Angeli, L.; Samuele, A.; Zanoli, S.; Bellucci, L.;
Tafi, A.; Casaluce, G.; Giorgi, G.; Armand-Ugon, M.; Gonzalez, E.; Esté, J. A.;
Baltzinger, M.; Bec, G.; Dumas, P.; Ennifar, E.; Botta, M. J. Med. Chem. 2009, 52,
840; (b) Radi, M.; Falciani, C.; Contemori, L.; Petricci, E.; Maga, G.; Samuele, A.;
Zanoli, S.; Terrazas, M.; Castria, M.; Togninelli, A.; Esté, J. A.; Clotet-Codina, I.;
Armand-Ugón, M.; Botta, M. ChemMedChem 2008, 3, 573; (c) Maga, G.; Radi,
M.; Zanoli, S.; Manetti, F.; Cancio, R.; Hübscher, U.; Spadari, S.; Falciani, C.;
Terrazas, M.; Vilarrasa, J.; Botta, M. Angew. Chem. Int. Ed. 2007, 46, 1810; (d)
Petricci, E.; Mugnaini, C.; Radi, M.; Togninelli, A.; Bernardini, C.; Manetti, F.;
Parlato, M. C.; Renzulli, M. L.; Alongi, M.; Falciani, C.; Corelli, F.; Botta, M.
ARKIVOC 2006, 7, 452.
14. Radi, M.; Botta, M.; Maga, G.; Falchi, F.; Baldanti, F.; Paolucci, S. WO/2011/
039735.
15. Schütz, P.; Karlberg, T.; Van Den Berg, S.; Collins, R.; Lehtiö, L.; Högbom, M.;
Holmberg-Schiavone, L.; Tempel, W.; Park, E. W.; Hammarström, M.; Moche,
M.; Thorsell, A. G.; Schüler, H. PLoS One 2010, 5, e12791.
16. Sekiguchi, T.; Kurihara, Y.; Fukumura, J. Biochem. Biophys. Res. Commun. 2007,
356, 668.
17. Bono, F.; Ebert, J.; Lorentzen, E.; Conti, E. Cell 2006, 126, 713.
18. Proteins were aligned using the Pymol alignment function. Energy
minimization of the model was performed with the software MacroModel
(Polak-Ribiere conjugate gradient algorithm, OPLS_2005 force field and
constant of 100 KJ molꢀ1 to constraint backbone atoms) and was terminated
when the energy gradient root mean square fell below 0.01 KJ Åꢀ1 molꢀ1
a
.
Acknowledgments
19. High-throughput docking was conducted using the software GOLD 3.24 on a
collection of 220000 compounds from the Asinex database. The 2D structures
of the Asinex compounds were initially converted into the corresponding 3D
structures using the Cerius2 4.10L software and then treated as reported in the
Supplementary data.
20. Diana, G. D.; Bailey, T. R. WO/97/36866.
21. Belon, C. A.; High, Y. D.; Lin, T.; Pauwels, F.; Frick, D. N. Biochemistry 2010, 49,
1822.
22. Banroques, J.; Cordin, O.; Doèere, M.; Linder, P.; Tanner, N. K. Mol. Cell. Biol.
2008, 28, 3359.
23. (a) Clayden, J.; Turner, H.; Pickworth, M.; Adler, T. Org. Lett. 2005, 7, 3147; (b)
Merlic, C. A.; Motamed, S.; Quinn, B. J. Org. Chem. 1995, 60, 3365.
24. Delano, W. L. The PyMOL Molecular Graphics System; DeLano Scientific: San
Carlos, CA, 2002.
This work was partially supported by the 6th FP Excellent-Hit
Consortium (LSHP-CT-2006-037257), the Italian National Research
Programme on AIDS Grant 40H26 to GM and by the Ministero della
Sanità, Fondazione IRCCS Policlinico San Matteo, Ricerca corrente
grants 80622 to FB. Financial support has been also provided by
Tuscany Region to MB. AS has been supported by a ‘‘Franca Rame
and Dario Fo’’ Nobel Foundation grant-in-aid.
Supplementary data
25. Gabelli, A.; Beermann, S.; Di Cicco, G.; Dietrich, U.; Maga, G. PLoS One 2011, 6,
e19810.
26. Wilhelm, S.; Carter, C.; Lynch, M.; Lowinger, T.; Dumas, J.; Smith, R. A.;
Schwartz, B.; Simantov, R.; Kelley, S. Nat. Rev. Drug. Disc. 2006, 10, 835.
27. Drewe, W. C.; Nanjunda, R.; Gunaratnam, M.; Beltran, M.; Parkinson, G. N.;
Reszka, A. P.; Wilson, W. D.; Neidle, S. J. Med. Chem. 2008, 51, 7751.
Supplementary data associated with this article can be found, in
References and notes
1. Estè, J. A.; Cihlar, T. Antivir. Res. 2010, 85, 25. and references therein.