Azobenzenyl Modified ꢀ-Cyclodextrins Isomers
SCHEME 1. Syntheses of 1 and 2
self-threading and self-dethreading dynamics as well as the
thermal or photochemical control of conformational exchange
of substituents.5 Easton et al. constituted a molecular machine
from modified CDs, and the photoisomerization of its substi-
tutent changed the in/out conformation of CD and provided the
on/off switch of the machine.6 On the other hand, the intermo-
lecular inclusion mode of modified CDs was reported to result
in the formation of complicated assemblies, such as a hermaph-
rodite [2]rotaxane with a daisy chain structure7 and supramo-
lecular polymers through host-guest interactions.8 However,
these studies were mainly focused on the assembly behaviors
of modified CDs with either self-included or self-excluded
conformation; the comparative study on the self-assembly of
modified CDs with the same composition but disparate confor-
mations is still rare, to the best of our knowledge. In this work,
we prepared a couple of azobenzenyl-modified CDs with
different topological structures, i.e., a self-locked conformer 1
and its self-unlocked analogue 2. Significantly, the self-locked
1 presents a structural character of CD-based [1]rotaxane, and
this [1]rotaxane self-assembles to a bimolecular capsule in
aqueous solution, while its self-unlocked analogue 2 forms a
linear supramolecule. It is of our particular interest to elucidate
the factors to restrict the conformation of modified CDs and
the influences on the self-assembly behaviors of different CD
conformers. These studies will serve our deep understanding
of the mechanism of supramolecular aggregation and may
provide a new way to control the form of supramolecular
aggregates by tuning the conformation of building blocks.
Results and Discussion
Synthesis. 1 was synthesized by Huisgen 1,3-dipolar cy-
cloaddition in 69% yield with use of the hydrothermal synthesis
(Scheme 1) and easily purified by recrystallization in water,
while its self-unlocked analogue 2 was also prepared in 71%
yield by “click” chemistry, a CuI-catalyzed Huisgen 1,3-dipolar
cycloaddition. A possible mechanism for the formation of 1 may
be that, with the capability of ꢀ-CD to include various organic
molecules in its hydrophobic cavity, 3 first formed an inclusion
complex with the intermediate 4, and then the reaction between
the azido group in 3 and the ethynyl group in 4 gave the product
1. This procedure is similar to a reported cycloaddition
procedure induced by cucurbituril, where a regiospecific 1,4-
disubstituted product was obtained through the encapsulation
of the cationic substrates in the cavity of cucurbituril.9 Owing
to the steric effect of the CD cavity, the synthesis of the self-
locked 1 under hydrothermal condition exhibited good 1,5-
disubstituted regioselectivity, like the increase of regioselectivity
of nitrile oxide cycloaddition in a ꢀ-CD-scaffold.10 However,
it should be noted that the formation of inclusion complex is
an equilibrium process, and the formation of self-unlocked
isomers of 1 is also possible in the hydrothermal synthesis.
(2) (a) Nepogodiev, S. A.; Stoddart, J. F. Chem. ReV. 1998, 98, 1959–1976.
(b) Wenz, G.; Han, B.-H.; Muller, A. Chem. ReV. 2006, 106, 782–817. (c) Harada,
A. Acc. Chem. Res. 2001, 34, 456–464. (d) Cheetham, A. G.; Hutchings, M. G.;
Claridge, T. D. W.; Anderson, H. L. Angew. Chem., Int. Ed. 2006, 45, 1596–
1599. (e) Michels, J. J.; O’Connell, M. J.; Taylor, P. N.; Wilson, J. S.; Cacialli,
F.; Anderson, H. L. Chem. Eur. J. 2003, 9, 6167–6176. (f) Murakami, H.;
Kawabuchi, A.; Matsumoto, R.; Ido, T.; Nakashima, N. J. Am. Chem. Soc. 2005,
127, 15891–15899. (g) Wang, Q.-C.; Qu, D. H.; Ren, J.; Chen, K.-C.; Tian, H,
Angew. Chem., Int. Ed. 2004, 43, 2661–2665. (h) Qu, D.-H.; Wang, Q.-C.; Tian,
H. Angew. Chem., Int. Ed. 2005, 44, 5296–5299. (i) Park, J. S.; Wilson, J. N.;
Hardcastle, K. I.; Bunz, U. H. F.; Srinivasarao, M. J. Am. Chem. Soc. 2006,
128, 7714–7715. (j) Oshikiri, T.; Takashima, Y.; Yamaguchi, H.; Harada, A.
J. Am. Chem. Soc. 2005, 127, 12186–12187. (k) Onagi, H.; Carrozzini, B.;
Cascarano, G. L.; Easton, C. J.; Edwards, A. J.; Lincoln, S. F.; Rae, A. D. Chem.
Eur. J. 2003, 9, 5971–5977.
(3) (a) Nelson, A.; Belitsky, J. M.; Vidal, S.; Joiner, C. S.; Baum, L. G.;
Stoddart, J. F. J. Am. Chem. Soc. 2004, 126, 11914–11922. (b) Ooya, T.; Eguchi,
M.; Yui, N. J. Am. Chem. Soc. 2003, 125, 13016–13017. (c) Liu, Y.; Yu, L.;
Chen, Y.; Zhao, Y.-L.; Yang, H. J. Am. Chem. Soc. 2007, 129, 10656–10657.
(d) Liu, Y.; Wang, H.; Chen, Y.; Ke, C.-F.; Liu, M. J. Am. Chem. Soc. 2005,
127, 657–666. (e) Onagi, H.; Blake, C. J.; Easton, C. J.; Lincoln, S. F. Chem.
Eur. J. 2003, 9, 5978–5988.
(4) (a) Han, Y.; Cheng, K.; Simon, K. A.; Lan, Y.; Sejwal, P.; Luk, Y.-Y.
J. Am. Chem. Soc. 2006, 128, 13913–13920. (b) Deng, W.; Onji, T.; Yamaguchi,
H.; Ikeda, N.; Harada, A. Chem. Commun. 2006, 4212–4214. (c) Kuwabara, T.;
Shiba, K.; Nakajima, H.; Ozawa, M.; Miyajima, N.; Hosoda, M.; Kuramoto,
N.; Suzuki, Y. J. Phys. Chem. A 2006, 110, 13521–13529. (d) Park, J. W.; Lee,
S. Y.; Song, H. J.; Park, K. K. J. Org. Chem. 2005, 70, 9505–9513. (e) Ma, X.;
Qu, D.-H.; Ji, F.-Y.; Wang, Q.-C.; Zhu, L.-L.; Xu, Y.; Tian, H. Chem. Commun.
2007, 1409–1411. (f) Ma, X.; W, Q.-C.; Tian, H. Tetrahedron lett. 2007, 48,
7112–7116.
(8) (a) Deng, W.; Yamaguchi, H.; Takashima, Y.; Harada, A. Angew. Chem.,
Int. Ed. 2007, 46, 5144–5147. (b) Harada, A. J. Polym. Sci., Part A 2006, 44,
5113–5119. (c) Miyauchi, M.; Hoshino, T.; Yamaguchi, H.; Kamitori, S.; Harada,
A. J. Am. Chem. Soc. 2005, 127, 2034–2035. (d) Liu, Y.; Fan, Z.; Zhang, H.-
Y.; Yang, Y.-W.; Ding, F.; Liu, S.-X.; Wu, X.; Wada, T.; Inoue, Y. J. Org.
Chem. 2003, 68, 8345–8352.
(5) (a) Inoue, Y.; Kuad, P.; Okumura, Y.; Takashima, Y.; Yamaguchi, H.;
Harada, A. J. Am. Chem. Soc. 2007, 129, 6396–6397. (b) Inoue, Y.; Miyauchi,
M.; Nakajima, H.; Takashima, Y.; Yamaguchi, H.; Harada, A. J. Am. Chem.
Soc. 2006, 128, 8994–8995. (c) Inoue, Y.; Miyauchi, M.; Nakajima, H.;
Takashima, Y.; Yamaguchi, H.; Harada, A. Macromolecules 2007, 40, 3256–
3262.
(9) (a) Mock, W. L.; Irra, T. A.; Wepsiec, J. P.; Adhya, M. J. Org. Chem.
1989, 54, 5302–5308. (b) Tuncel, D.; Steinke, J. H. G. Chem. Commun. 1999,
1509–1510. (c) Carlqvist, P.; Maseras, F. Chem. Commun. 2007, 748–750.
(10) (a) Barr, L.; Lincoln, S. F.; Easton, C. J. Chem. Eur. J. 2006, 12, 8571–
8580. (b) Meyer, A. G.; Easton, C. J.; Lincoln, S. F.; Simpson, G. W. J. Org.
Chem. 1998, 63, 9069–9075.
(6) Coulston, R. J.; Onagi, H.; Lincoln, S. F.; Easton, C. J. J. Am. Chem.
Soc. 2006, 128, 14750–14751.
(7) Onagi, H.; Easton, C. J.; Lincoln, S. F. Org. Lett. 2001, 3, 1041–1044.
J. Org. Chem. Vol. 73, No. 14, 2008 5299