10.1002/anie.201705006
Angewandte Chemie International Edition
COMMUNICATION
123, 8201 d) C. Uttamapinant, A. Tangpeerachaikul, S. Grecian, S.
Clarke, U. Singh, P. Slade, K. R. Gee, A. Y. Ting, Angew. Chem. Int.
Ed. 2012, 51, 5852; Angew. Chem. 2012, 124, 5954; e) S. Li, L. Wang,
F. Yu, Z. Zhu, D. Shobaki, H. Chen, M. Wang, J. Wang, G. Qin, U. J.
Erasquin, L. Ren, Y. Wang, C. Cai, Chem. Sci. 2017, 8, 2107.
For the use of nanoparticle-based catalysts, see: a) J. Clavadetscher, S.
Hoffmann, A. Lilienkampf, L. Mackay, R. M. Yusop, S. A. Rider, J. J.
Mullins, M. Bradley, Angew. Chem. Int. Ed. 2016, 55, 15662; Angew.
Chem. 2016, 128, 15891; b) Y. Bai, X. Feng, H. Xing, Y. Xu, B. K. Kim,
N. Baig, T. Zhou, A. A. Gewirth, Y. Lu, E. Oldfield, S. C. Zimmerman, J.
Am. Chem. Soc. 2016, 138, 11077.
Finally, and importantly, we found that the RuAtAC can also
be carried in presence of bacteria (E. coli) without compromising
their viability. Therefore, incubation of PBS containing E coli with
1a (1 mM), 2a (2 mM) and Cp*Ru(cod)Cl (100 µM) led to a rapid
increase in the fluorescence. After 24h, centrifugation and
analysis in a plate reader of both, the extracellular supernatant,
and the methanol/water (8 : 2) extracts of the resulting bacteria
pellet, showed a combined increased in fluorescence of 8 times
with respect to controls (Figure S25). Importantly, the
fluorescence was mainly concentrated inside the bacteria, and
the product (3aa) was also detected by HPLC-ESI. Analysis of
the optical density of the bacterial cultures revealed that neither
the catalyst nor the reactants are meaningfully toxic (Table S5).
[7]
[8]
a) J. C. Jewett, C. R. Bertozzi, Chem. Soc. Rev. 2010, 39, 1272; b) N.
K. Devaraj, R. Weissleder, Acc. Chem. Res. 2011, 44, 816; For
photoinducible annulations, see: c) R. K. V. Lim, Q. Lin, Acc. Chem.
Res. 2011, 44, 828.
[9]
a) M. Vrabel, T. Carell, Cycloadditions in Bioorthogonal Chemistry.
Springer, 2016; b) P. Shieh, C. R. Bertozzi, Org. Biomol. Chem. 2014,
12, 9307; c) C. S. McKay, M. G. Finn, Chem. Biol. 2014, 21, 1075; d) M.
King, A. Wagner, Bioconjugate Chem. 2014, 25, 825; e) D. M.
Patterson, L. A. Nazarova, J. A. Prescher, ACS Chem. Biol. 2014, 9,
592; f) C. P. Ramil, Q. Lin, Chem. Commun. 2013, 49, 11007.
In summary, we have discovered a new methodology to achieve
catalytic, orthogonal chemical annulations in water, at room
temperature. The reaction is promoted by specific RuII catalysts,
works efficiently with a variety of azides and thioalkynes, and
can be carried out in presence of biomolecules (glutathione,
aminoacids, peptides). The reaction is also efficient in
phosphate buffered saline, and in complex biological media such
as cell lysates and fetal bovine serum, and even in presence of
living bacteria. Importantly, the reaction is mutually compatible
with the classical CuAAC, thus providing for tandem
biorthogonal processes.
[10] a) M. Yang, Y. Yang, P. R. Chen, Top. Curr. Chem. 2016, 374, 2; b) M.
Y. Yang, J. Li, P. R. Chen, Chem. Soc. Rev. 2014, 43, 6511.
[11] C. Wang, D. Ikhlef, S. Kahlal, J.-Y. Saillard, D. Astruc, Coord. Chem.
Rev. 2016, 316, 1.
[12] L. Zhang, X. Chen, P. Xue, H. H. Y. Sun, I. D. Williams, K. B. Sharpless,
V. V. Fokin, G. Jia, J. Am. Chem. Soc. 2005, 127, 15998.
[13] J. R. Johansson, T. Beke-Somfai, A. Said Stalsmeden, N. Kann, Chem.
Rev. 2016, 116, 14726.
[14] For a recent review, see: a) L. Zhu, C. J. Brassard, X. Zhang, P. M.
Guha, R. J. Clark, Chem. Rec. 2016, 16, 1501. See also: b) B. T.
Worrell, J. A. Malik, V. V. Fokin, Science 2013, 340, 457.
[15] a) B. C. Boren, S. Narayan, L. K. Rasmussen, L. Zhang, H. Zhao, Z. Lin,
G. Jia, V. V. Fokin, J. Am. Chem. Soc. 2008, 130, 8923; b) E. Boz, N. Ş.
Tüzün, J. Organomet. Chem. 2013, 724, 167.
Acknowledgements
This work has received financial support from Spanish grants
(SAF2016-76689-R), the Xunta de Galicia (2015-CP082 and
Centro Singular de Investigación de Galicia accreditation 2016-
2019 ED431G/09), the ERDF, and the ERC (Adv. Grant Nº.
340055). We also thank the Orfeo-Cinqa network CTQ2016-
81797-REDC, and T. Seedat and V. Fraga for preliminary
experiments.
[16] J. S. Oakdale, V. V. Fokin, S. Umezaki, T. Fukuyama, Org. Synth. 2013,
90, 96.
[17]
a) T.-H. Wang, F.-L. Wu, G.-R. Chiang, S.-T. He, Y.-H. Lo, J.
Organomet. Chem. 2014, 774, 57; b) H. X. Siyang, H. L. Liu, X. Y. Wu,
P. N. Liu, RSC Adv. 2015, 5, 4693; c) R. A. Molla, A. S Roy, K. Ghosh,
N. Salam, M. A. Iqubal, K. Tuhina, S. M. Islam J. Organomet. Chem.
2015, 776, 170.
Keywords: bioorthogonal • ruthenium • thioalkyne • click • azide
[18] a) S. Ding, G. Jia, J. Sun, Angew. Chem. Int. Ed. 2014, 53, 1877;
Angew. Chem. 2014, 126, 1908; b) Q. Luo, G. Jia, J. Sun, Z. Lin, J. Org.
Chem. 2014, 79, 11970.
[1]
[2]
H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem. Int. Ed. 2001,
40, 2004; Angew. Chem. 2001, 113, 2056.
For instance, see: a) J. E. Hein, V. V Fokin, Chem. Soc. Rev. 2010, 39,
1302; b) F. Musumeci, S. Schenone, A. Desogus, E. Nieddu, D.
Deodato, L. Botta, Curr. Med. Chem. 2015, 22, 2022; c) T. Zhang, Z.
Zheng, X. Cheng, X. Ding, Y. Peng, Prog. Chem. 2008, 20, 1090; d) J.
Matyašovský, P. Perlíková, V. Malnuit, R. Pohl, M. Hocek, Angew.
Chem. Int. Ed. 2016, 55, 15856. Angew. Chem. 2016, 128, 16088.
a) L. Li, Z. Zhang, Molecules 2016, 21, 1393; b) V. K. Tiwari, B. B.
Mishra, K. B. Mishra, N. Mishra, A. S. Singh, X. Chen, Chem. Rev.
2016, 116, 3086; c) D. Schulz, A. Rentmeister, ChemBioChem 2014,
15, 2342.
[19] C. Le Droumaguet, C. Wang, Q. Wang, Chem. Soc. Rev. 2010, 39,
1233.
[20] In anhydrous CH2Cl2 under argon, 3aa was obtained in 78% yield
(Table S1)
[21] a) C. Streu, E. Meggers, Angew. Chem. Int. Ed. 2006, 45, 5645; Angew.
Chem. 2006, 118, 5773; b) T. Volker, F. Dempwolff, P. L. Graumann, E.
Meggers, Angew. Chem. Int. Ed. 2014, 53, 10536; Angew. Chem. 2014,
126, 10705; c) H.-T. Hsu, B. M. Trantow, R. M. Waymouth, P. A.
Wender, Bioconjugate Chem. 2016, 27, 376; d) M. I. Sánchez, C.
Penas, M. E. Vázquez, J. L. Mascareñas, Chem. Sci. 2014, 5, 1901; e)
M. Tomás-Gamasa, M. Martínez-Calvo, J. R. Couceiro, J. L.
Mascareñas, Nat. Commun. 2016, 7, 12538.
[3]
[4]
D. C. Kennedy, C. S. McKay, M. C. B. Legault, D. C. Danielson, J. A.
Blake, A. F. Pegoraro, A. Stolow, Z. Mester, J. P. Pezacki, J. Am.
Chem. Soc. 2011, 133, 17993.
[22] Increasing the amount of the catalyst doesn’t lead to substantial
changes in the rate (Supp. Info).
[5]
[6]
V. Hong, N. F. Steinmetz, M. Manchester, M. G. Finn, Bioconjugate
Chem. 2010, 21, 1912.
[23] L. K. Rasmussen, B. C. Boren, V. V. Fokin, Org. Lett. 2007, 9, 5337.
[24] This might be associated to the lower solubility of O2 and/or the Ru
catalysts in water than in the organic solvent. See: a) C.-J. Li, L. Chen,
Chem. Soc. Rev. 2006, 35, 68; b) A. Chanda, V. V. Fokin, Chem. Rev.
2009, 109, 725.
For selected examples, see: a) V. O. Rodionov, S. I. Presolski, D. Díaz
Díaz, V. V. Fokin, M. G. Finn, J. Am. Chem. Soc. 2007, 129, 12705; b)
S. I. Presolski, V. Hong, S.-H. Cho, M. G. Finn, J. Am. Chem. Soc.
2010, 132, 14570; c) C. Besanceney-Webler, H. Jiang, T. Zheng, L.
Feng, D. Soriano del Amo, W. Wang, L. M. Klivansky, F. L. Marlow, Y.
Liu, P. Wu, Angew. Chem. Int. Ed. 2011, 50, 8051; Angew. Chem. 2011,
[25] a) According to Fürstner et. al, Cp*Ru(2a)Cl would be an 18e- Ru
species, with the alkyne acting as a 4e- donor ligand: D.-A. Roşca, K.
4
This article is protected by copyright. All rights reserved.