cyclophane family may have potential applications in
theoretical chemistry, guest-host systems, and optoelec-
tronics.
Scheme 1 illustrates the synthetic approaches to the
cyclophane 7a. The alkylation of the commercially available
material, 3,4-dihydroxy-benzaldehyde, followed by the
2,4-diiodobenzene with catalyst Pd(PPh3)2Cl2 followed by a
Suzuki coupling reaction with phenylboronic acid gave
compound 4 in 84% yield. Dibenz[a,j]anthracene iodide 5
was prepared in almost quantitative yield following the
classical procedure via ICl induced intramolecular cyclization
of 4.5 Dicarbonyl 6a was synthesized through another Suzuki
coupling reaction between dibenz[a,j]anthracene iodide 5
and 4-formylphenylboronic acid in 88% yield. Finally, the
McMurry reaction was employed for the coupling of
aldehyde groups of 6a. It is quite worth noting that the
intramolecular coupling product 7a was observed without
any intermolecular dimerization side product. This result
was in sharp contrast to our recently reported results on
the synthesis of another type of macromolecule, indicating
the importance of distances between the reacting groups
in the McMurry reaction.6
Scheme 1. Synthesis of Cyclophane 7a
The intramolecular coupling was unambiguously con-
1
1
firmed by H NMR spectra and MALDI-TOF MS. The H
NMR spectra in CDCl3 showed the evident change of the
proton signal from molecule 6a to cyclophane 7a, as was
shown in Figure 1. After the Suzuki reaction, the signal
assigned to Hb in 5 at a chemical shift of 9.85 ppm (see the
Supporting Information) shifted to δ 7.25 ppm in compound
6a. Such a shift resulted from the shielding effect from the
benzene rings connected to the dibenz[a,j]anthracene unit.
This signal further shifted upfield at an unusual chemical
shift δ of 5.91 ppm after the intramolecular McMurry
olefination, which was due to the additional shielding effect
(1) (a) Mason, P. E.; Bryant, W. S.; Gibson, H. W. Macromolecules
1999, 32, 1559–1569. (b) Brown, C. L.; Jonas, U.; Preece, J. A.; Ringsdorf,
H.; Seitz, M.; Stoddart, J. F. Langmuir 2000, 16, 1924–1930. (c) Dvornikovs,
V.; House, B. E.; Kaetzel, M.; Dedman, J. R.; Smithrud, D. B. J. Am. Chem.
Soc. 2003, 125, 8290–8301. (d) Wang, W.; Xu, J.; Lai, Y. H. Org. Lett.
2003, 5, 2765–2768. (e) Jeppesen, J. O.; Nielsen, M. B.; Becher, J. Chem.
ReV. 2004, 104, 5115–5131. (f) Camacho, D. H.; Salo, E. V.; Guan, Z.
Org. Lett. 2004, 6, 865–868. (g) Katz, E.; Lioubashevsky, O.; Willner, I.
J. Am. Chem. Soc. 2004, 126, 15520–15532. (h) Ariga, K.; Nakanishi, T.;
Terasaka, Y.; Tsuji, H.; Sakai, D.; Kikuchi, J. Langmuir 2005, 21, 976–
981. (i) Das, B.; Abe, S. J. Phys. Chem. B 2006, 110, 23806–23811. (j)
Bogdan, N.; Grosu, I.; Benoˆıt, G.; Toupet, L.; Ramondenc, Y.; Condamine,
E.; Dumitrescu, I. S.; Ple´, G. Org. Lett. 2006, 8, 2619–2622. (k) Cooke,
G.; Woisel, P.; Bria, M.; Delattre, F.; Garety, J. F.; Hewage, S. G.; Rabani,
G.; Rosair, G. M. Org. Lett. 2006, 8, 1423–1426. (l) Tanaka, K.; Hori, T.;
Osaka, T.; Noguchi, K.; Hirano, M. Org. Lett. 2007, 9, 4881–4884. (m)
Aprahamian, I.; Dichtel, W. R.; Ikeda, T.; Heath, J. R.; Stoddart, J. F. Org.
Lett. 2007, 9, 1287–1290. (n) Bunker, B. C.; Huber, D. L.; Kushmerick,
J. G.; Dunbar, T.; Kelly, M.; Matzke, C.; Cao, J.; Jeppesen, J. O.; Perkins,
J.; Flood, A. H.; Stoddart, J. F. Langmuir 2007, 23, 31–34. (o) Rulkens,
R.; Gates, D. P.; Balaishis, D.; Pudelski, J. K.; McIntosh, D. F.; Lough,
A. J.; Manners, I. J. Am. Chem. Soc. 1997, 119, 10976–10986.
(2) (a) Rubin, Y.; Parker, T. C.; Khan, S. I.; Holliman, C. L.; McElvany,
S. W. J. Am. Chem. Soc. 1996, 118, 5308–5309. (b) Nitschke, J.; Tilley,
T. D. J. Org. Chem. 1998, 63, 3673–3676. (c) Fox, J. M.; Lin, D. J. Org.
Chem. 1998, 63, 2031–2038. (d) Hinrichs, H.; Fischer, A. K.; Jones, P. G.;
Hopf, H.; Haley, M. M. Org. Lett. 2000, 2, 969–972. (e) Iyoda, M.; Kondo,
T.; Nakao, K.; Hara, K.; Kuwatani, Y.; Yoshida, M.; Matsuyama, H. Org.
Lett. 2000, 2, 2081–2083. (f) Nitschke, J. R.; Zu1rcher, S.; Tilley, T. D.
J. Am. Chem. Soc. 2000, 122, 10345–10352. (g) Sun, S. S.; Anspach, J. A.;
Lees, A. J.; Zavalij, P. Y. Organometallics 2002, 21, 685–693. (h) Collins,
S. K.; Yap, G. P. A.; Fallis, A. G. Org. Lett. 2002, 4, 11–14. (i) Lin, C. H.;
Tour, J. J. Org. Chem. 2002, 67, 7761–7768. (j) Wang, W.; Xu, J.; Lai,
Y. H. Org. Lett. 2003, 5, 2765–2768. (k) Baxter, P. N. W. J. Org. Chem.
2004, 69, 1813–1821. (l) Odermatt, S.; Alonso-Go´mez, J. L.; Seiler, P.;
Cid, M. M.; Diederich, F. Angew. Chem. 2005, 117, 5203–5207. (m)
Morisaki, Y.; Chujo, Y. Angew. Chem., Int. Ed. 2006, 45, 6430–6437.
(3) (a) Sasaki, S.; Mizuno, M.; Naemura, K.; Tobe, Y. J. Org. Chem.
2000, 65, 275–283. (b) Baxter, P. N. W. J. Org. Chem. 2004, 69, 1813–
1821. (c) Clay, M. D.; Fallis, A. G. Angew. Chem. 2005, 117, 4107–4110.
(d) Tseng, J. C.; Huang, S. L.; Lin, C. L.; Lin, H. C.; Jin, B. Y.; Chen,
C. Y.; Yu, J. K.; Chou, P. T.; Luh, T. Y. Org. Lett. 2003, 5, 4381–4384.
Corey-Fuchs reaction afforded alkyne 3 in 91% yield. A
Sonogashira coupling reaction between 3 and 1,5-dibromo-
3114
Org. Lett., Vol. 10, No. 14, 2008