provide straightforward access to the optically active ꢀ-hydroxy
carbonyl structural unit found in many natural products drugs,6
have received remarkable attention. Since the pioneering work
by Barbas,7a List,7b,c and co-workers that L-proline could act
as an efficient catalyst for direct aldol reaction between acetone
and aldehydes, a number of proline derivatives have been
developed for this enantioselective transformation.2c,8,9 Accord-
ing to the Houk-List model10 and Gong’s work9c,d the hydrogen
bonding donor in proline and its analogues is crucial to the
catalytic activity and selectivity. In our continuing efforts to
develop readily tunable and highly enantioselective organocata-
lysts,11 we recently designed a series of bifunctional organo-
catalysts based on the proline catalysis concept and double
hydrogen bonding activation. For example, the catalysts 1 and
2 show superior catalytic activities for the aldol reactions
Rational Combination of Two Privileged Chiral
Backbones: Highly Efficient Organocatalysts for
Asymmetric Direct Aldol Reactions between
Aromatic Aldehydes and Acylic Ketones
Jia-Rong Chen, Xiao-Lei An, Xiao-Yu Zhu, Xu-Fan Wang,
and Wen-Jing Xiao*
Key Laboratory of Pesticide & Chemical Biology, Ministry
of Education, College of Chemistry, Central China Normal
UniVersity, 152 Luoyu Road, Wuhan, Hubei 430079, China
ReceiVed April 27, 2008
(4) For review on enamine-SOMO activation mode, see:(a) Bertelsen, S.;
Nielsen, M.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2007, 46, 7356. For
pioneering examples, see: (b) Beeson, T. D.; Mastracchio, A.; Hong, J.; Ashton,
K.; MacMillan, D. W. C. Science 2007, 316, 582. (c) Jang, H.; Hong, J.;
MacMillan, D. W. C. J. Am. Chem. Soc. 2007, 129, 7004. (d) Sibi, M. P.;
Hasegawa, M. J. Am. Chem. Soc. 2007, 129, 4124.
(5) Dienamine activation mode, see:(a) Hong, B.; Wu, M.; Tseng, H.; Liao,
J. Org. Lett. 2006, 8, 2217. (b) Bertelsen, S.; Marigo, M.; Brandes, S.; DinIr,
P.; Jørgensen; K. A, J. Am. Chem. Soc. 2006, 128, 12973, and references cited
therein.
(6) For a review, see: Modern Aldol Reactions; Mahrwald, R, Ed.; Wiley-
VCH: Weinheim, Germany, 2004; Vols. 1 and 2.
(7) (a) Sakthievel, K.; Notz, W.; Bui, T.; Barbas, C. F., III J. Am. Chem.
Soc. 2001, 123, 5260. (b) List, B.; Lerner, R. A.; Barbas, C. F., III J. Am. Chem.
Soc. 2000, 122, 2395. (c) Notz, W.; List, B. J. Am. Chem. Soc. 2000, 122, 7386.
(8) For recent reviews on chiral secondary amine-catalyzed aldol and related
reactions, see: (a) Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B. Chem.
ReV. 2007, 107, 5471. (b) Erkkila¨, A.; Majander, I.; Pihko, P. M. Chem. ReV.
2007, 107, 5416. (c) Guillena, G.; Na`jera, C.; Ramo´n, D. J. Tetrahedron:
Asymmetry 2007, 18, 2249. (d) List, B. Chem. Commun. 2006, 819. (e) Barbas,
C. F., III Angew. Chem., Int. Ed. 2008, 47, 42.
A new class of organocatalysts has been designed by rational
combination of proline with cinchona alkaloids. The chiral
amine 3a, prepared from L-proline and cinchonidine, has been
found to be an efficient catalyst for the direct aldol reactions
of acetone or 2-butanone with a wide range of aldehydes
(up to 98% ee). The cinchonidine backbone is essential to
the reaction efficiency and enantioselectivity.
(9) For representative examples of organocatalytic aldol reactions, see:(a)
Northrup, A. B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124, 6798. (b)
Northrup, A. B.; Mangion, I. K.; MacMillan, D. W. C. Angew. Chem., Int. Ed.
2004, 43, 2152. (c) Tang, Z.; Jiang, F.; Yu, L.-T.; Gong, L.-Z.; Mi, A.-Q.; Jiang,
Y.-Z.; Wu, Y.-D. J. Am. Chem. Soc. 2003, 125, 5262. (d) Tang, Z.; Tang, Z.-
H.; Chen, X.-H.; Cun, L.-F.; Mi, A.-Q.; Jiang, Y.-Z.; Gong, L.-Z. J. Am. Chem.
Soc. 2005, 127, 9285. (e) Torri, H.; Nakadai, M.; Ishihara, K.; Saito, S.;
Yamamota, H. Angew. Chem., Int. Ed. 2004, 43, 1983. (f) Wang, X.-J.; Zhao,
Y.; Liu, J.-T. Org. Lett. 2007, 9, 1343. (g) Guizzetti, S.; Benaglia, M.; Raimondi,
L.; Celentano, G. Org. Lett. 2007, 9, 1247. (h) Berkessel, A.; Koch, B.; Lex, J.
AdV. Synth. Catal. 2004, 346, 1141. (i) Cobb, A. J. A.; Shaw, D. M.; Ley, S. V.
Synlett 2004, 558. (j) Cobb, A. J. A.; Shaw, D. M.; Longbottom, D. A.; Gold,
J. B.; Ley, S. V. Org. Biomol. Chem. 2005, 3, 84. (k) Gryko, D.; Lipinski, R.
AdV. Synth. Catal. 2005, 347, 1948. (l) Samanta, S.; Liu, J.; Dodda, R.; Zhao,
C.-G. Org. Lett. 2005, 7, 5321. (m) Kano, T.; Takai, J.; Tokuda, O.; Maruoka,
K. Angew. Chem., Int. Ed. 2005, 44, 3055. (n) Krattiger, P.; Kova`sy, R.; Revell,
J. D.; Ivan, S.; Wennemers, H. Org. Lett. 2005, 7, 1101. (o) Samanta, S.; Zhao,
C.-G. Tetrahedron Lett. 2006, 47, 3383. (p) Gu, L.; Yu, M.; Wu, X.; Zhang, Y.;
Zhao, G. AdV. Synth. Catal. 2006, 348, 2223. (q) Mase, N.; Nakai, Y.; Ohara,
N.; Yoda, H.; Takabe, K.; Tanaka, F.; Barbas, C. F., III J. Am. Chem. Soc.
2006, 128, 734. (r) Wu, Y.; Zhang, Y.; Yu, M.; Zhao, G.; Wang, S. Org. Lett.
2006, 8, 4417. (s) Font, D.; Jimeno, C.; Pericas, M. A. Org. Lett. 2006, 8, 4653.
(t) Hayashi, Y.; Sumiya, T.; Takahashi, J.; Gotoh, H.; Urushima, T.; Shoji, M.
Angew. Chem., Int. Ed. 2006, 45, 958. (u) Co´rdova, A.; Zou, W.; Dziedzic, P.;
Ibrahem, I.; Reyes, E.; Xu, Y. Chem. Eur. J. 2006, 12, 5383. (v) Luo, S.; Xu,
H.; Li, J.; Zhang, L.; Cheng, J.-P. J. Am. Chem. Soc. 2007, 129, 3074. (w) Zhou,
Y.; Shan, Z. J. Org. Chem. 2006, 71, 9510. (x) Cheng, C.-L.; Sun, J.; Wang, C.;
Zhang, Y.; Wei, S.-Y.; Jiang, F.; Wu, Y.-D. Chem. Commun. 2006, 215. (y)
Wang, Y.; Wei, S.-Y.; Sun, J. Synlett 2006, 3319. (z) Cheng, C.-L.; Wei, S.-Y.;
Sun, J. Synlett 2006, 2419. (aa) Raj, M.; Vishnumaya; Ginotra, S. K.; Singh, V.
K Org. Lett. 2006, 8, 4097. (ab) Ma, G.-N.; Zhang, Y.-P.; Shi, M. Synthesis
2007, 197. (ac) D’Elia, V.; Zwicknagl, H.; Reiser, O J. Org. Chem. 2008, 73,
3262. (ad) Rodriguez, B.; Rantanen, T.; Bolm, C Angew. Chem., Int. Ed. 2006,
45, 6924.
Since 2000, the capacity to catalyze enantioselective trans-
formations with organic small molecules has remained a focal
point for extensive research efforts in the field of asymmetric
catalysis.1 In particular, the use of chiral secondary amine as
catalysts has proven to be a powerful protocol for stereoselective
functionalizations of carbonyl compounds.2–5 In this active
research field, the asymmetric direct aldol reactions, which
(1) (a) For general reviews on organocatalysis, see : Dalko, P. I.; Moisan, L.
Angew. Chem., Int. Ed. 2004, 43, 5138. (b) Berkessel, A.; Gro¨ger, H. Asymmetric
Organocatalysis; From Biomimetic Concepts to Applications in Asymmetric
Synthesis; Wiley-VCH: Weinheim, Germany, 2005. (c) EnantioselectiVe Orga-
nocatalysis; P. I. DalkoP. I., Ed.; Wiley-VCH: Weinheim, Germany, 2007. (d)
Enders, C.; Grondal, C.; Hu¨ttl, M. R. M. Angew. Chem., Int. Ed. 2007, 46, 1570.
(e) Gaunt, M. J.; Johansson, C. C. C.; McNally, A.; Vo, N. T. Drug DiscoVery
Today 2007, 12, 8. See also special issues on asymmetric organocatalysis: (f)
Acc. Chem. Res. 2004, 37, issue 8. (g) AdV. Synth. Catal. 2004, 346, issue 9-
10. (h) Chem. ReV. 2007, 107, issue 12.
(2) Reviews on enamine catalysis, see:(a) List, B. Acc. Chem. Res. 2004,
37, 548. (b) Notz, W.; Tanaka, F.; Barbas, C. F., III Acc. Chem. Res. 2004, 37,
580. (c) Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B. Chem. ReV 2007,
107, 5407. (d) Guillena, G.; Ramo´n, D. J. Tetrahedron: Asymmetry 2006, 17,
1465. (e) Marigo, M.; Jørgensen, K. A. Chem. Commun. 2006, 2001. references
cited therein.
(10) (a) Bahmanyar, S.; Houk, K. N.; Martin, H. J.; List, B. J. Am. Chem.
Soc. 2003, 125, 2475. (b) Hoang, L.; Bahmanyar, S.; Houk, K. N.; List, B. J. Am.
Chem. Soc. 2003, 125, 16.
(3) For an excellent recent review on iminium ion activation, see: Lelais,
G.; MacMillan, D. W. C. Aldrichim. Acta 2006, 39, 79.
6006 J. Org. Chem. 2008, 73, 6006–6009
10.1021/jo800910s CCC: $40.75 2008 American Chemical Society
Published on Web 06/24/2008