X. Liao et al. / Tetrahedron Letters 49 (2008) 4149–4152
4151
All the synthesized nucleosides were evaluated as potential
inhibitors of HCV using the cell-based bicistronic replicon assay,
modified for RNA quantitation by RNase protection.3 While none
of the analogs showed cytotoxicity below 100 lM, unfortunately
they were inactive in the inhibition of HCV replication when tested
up to 100 lM. A successful inhibitory action requires the nucleo-
sides to be converted to their corresponding nucleoside triphos-
phates; therefore, one possible reason for the inactivity of the
cyclopentenyl nucleoside is its inability to be phosphorylated by
the appropriate kinases.4
Cl
N
X
N
N
TBPSO
TBPSO
Y
OH
a
Me
O
O
O
O
21a : X = CH, Y = H
22a : X = CF, Y = H
12
In summary, a series of novel 20-b-C-methyl-neplanocin ana-
logues were successfully synthesized and their biological activity
was evaluated. Microwave irradiation improved a key Mitsunobu
coupling reaction. To the best of our knowledge, this represents
the first documented case of the synthesis of neplanocin analogues
under these conditions. Further structure–activity relationship and
other biological evaluations of these analogues are currently
underway, and will be reported in due course.
23a: X = CH, Y = NHAc
24a: X = CH, Y = NH2
b
Z
c
Z
X
N
N
X
N
N
TBPSO
d
Y
HO
N
Y
N
Me
Me
O
O
References and notes
HO
OH
21b : X = CH, Y = H, Z = NH2
22b : X = CF, Y = H, Z = NH2
23b: X = CH, Y = NH2, Z = NH2
21c : X = CH, Y = H, Z = NH2
1. Seeff, L. B.; Hoofnagle, J. H. National Institutes of Health Consensus Develop-
ment Conference Statement: Management of Hepatitis C, June 10–12, 2002,
Hepathology 2002, 36, S3–S20.
2. Alter, M. J.; Kreuszon-Moran, D.; Nainan, O. V.; McQuillan, G. M.; Gao, F. X.;
Moyer, L. A.; Kaslow, R. A.; Margolis, H. S. New Engl. J. Med. 1999, 341, 556.
3. Carroll, S. S.; Tomassini, J. E.; Bosserman, M.; Getty, K.; Stahlhut, M. W.; Eldrup,
A. B.; Bhat, B.; Hall, D.; Simcoe, A. L.; LaFemina, R.; Rutkowski, C. A.; Wolanski,
B.; Yang, Z.; Migliaccio, G.; De Francesco, R.; Kuo, L. C.; MacCoss, M.; Olsen, D. B.
J. Biol. Chem. 2003, 278, 11979.
22c : X = CF, Y = H, Z = NH2
23c: X = CH, Y = NH2, Z = NH2
Scheme 3. Reagents and conditions: (a) Ph3P, DIAD, THF, rt, 20–30%; or microwave
80 °C, 1 min, 40–50%; (b) 1 N NaOH, MeOH; (c) methanolic ammonia, 18 h, 80 °C;
(d) 4 N HCl, MeOH, rt.
4. Eldrup, A. B.; Allerson, C. R.; Bennett, C. F.; Bera, S.; Bhat, B.; Bhat, N.;
Bosserman, M. R.; Brooks, J.; Burlein, C.; Carroll, S. S.; Cook, P. D.; Getty, K. L.;
MacCoss, M.; McMasters, D. R.; Olsen, D. B.; Prakash, T. P.; Prhavc, M.; Song, Q.;
Tomassini, J. E.; Xia, J. J. Med. Chem. 2004, 47, 2283; Olsen, D. B.; Eldrup, A. B.;
Bartholomew, L.; Bhat, B.; Bosserman, M. R.; Ceccacci, A.; Colwell, L. F.; Fay, J. F.;
Flores, O. A.; Getty, K. L.; Grobler, J. A.; LaFemina, R. L.; Markel, E. J.; Migliaccio,
G.; Prhavc, M.; Stahlhut, M. W.; Tomassini, J. E.; MacCoss, M.; Hazuda, D. J.;
Carroll, S. S. Antimicrob. Agents Chemother. 2004, 48, 3944.
Bz
O
N
TBPSO
O
TBPSO
OH
N
5. For recent anti-HCV Reviews: Zapf, C. W.; Bloom, J. D.; Levin, J. I. Annu. Rep. Med.
Chem. 2007, 42, 281; De Clercq, Erik. Nat. Rev. Drug Discov. 2007, 6, 1001; De
Francesco, Raffaele; Carfi, Andrea Adv. Drug Deliv. Rev. 2007, 59, 1242; Roenn,
R.; Sandstroem, A. Curr. Top. Med. Chem. 2008, 8, 533.
a
Me
O
O
O
O
6. Marquez, V. E.; Lim, M.-I. Med. Res. Rev. 1986, 6, 1; Marquez, V. E. Adv. Antiviral
Drug Des. 1996, 2, 89; Shuto, S.; Obara, T.; Saito, Y.; Andrei, G.; Snoeck, R.; De
Clercq, E.; Matsuda, A. J. Med. Chem. 1996, 39, 2392.
25a
12
7. Yaginuma, S.; Muto, N.; Tsujino, M.; Sudate, Y.; Hayashi, M.; Otani, M. J.
Antibiot. 1981, 34, 359; Bennett, L. L., Jr.; Brochman, R. W.; Rose, L. M.; Allan, P.
W.; Shaddix, S. C.; Shealy, Y. F.; Clayton, J. D. Mol. Pharmacol. 1985, 27, 666;
Wolfe, M. S.; Borchardt, R. T. J. Med. Chem. 1991, 34, 1521; De Clercq, E.
Antimicrob. Agents Chemother. 1985, 28, 84.
8. Daluge, S. M.; Good, S. S.; Feletto, M. B.; Miller, W. H.; St. Clair, M. H.; Boone, L.
R.; Tisdale, M.; Parry, N. R.; Reardon, J. E.; Dornsife, R. E.; Averett, D. R.;
Krenitsky, T. A. Antimicrob. Agents Chemother. 1997, 41, 1082; Weller, S.;
Radomski, K. M.; Lou, Y.; Sterin, D. S. Antimicrob. Agents Chemother. 2000, 44,
2052.
b
X
N
X
N
O
TBPSO
O
HO
N
N
d
Me
Me
OH
O
O
HO
9. Vince, R.; Hua, M. J. Med. Chem. 1990, 33, 17.
10. Ohira, S.; Sawamoto, T.; Yamato, M. Tetrahedron Lett. 1995, 36, 1537.
11. Bio, M. M.; Xu, F.; Waters, M.; Williams, J. M.; Savary, K. A.; Cowden, C. J.; Yang,
C.; Buck, E.; Song, Z. J.; Tschaen, D. M.; Volante, R. P.; Reamer, R. A.; Grabowski,
E. J. J. J. Org. Chem. 2004, 69, 6257; Xu, F.; Simmons, B.; Savary, K.; Yang, C.;
Reamer, R. A. J. Org. Chem. 2004, 69, 7783.
12. Butora, G.; Olsen, D. B.; Carroll, S. S.; McMasters, D. R.; Schmitt, C.; Leone, J. F.;
Stahlhut, M.; Burlein, C.; MacCoss, M. Bio. Med. Chem. 2007, 15, 5219.
13. Taniguchi, T.; Ogasawara, K. Angew. Chem., Int. Ed. 1998, 37, 1136. Note: during
the large scale synthesis, even though with the addition of excess DIBAL, we
observed that the hemiketal could not be consumed completely, just worked
up and treated the crude mixture with NaBH4 to give the desired diol.
14. Rodriguez, J. B. Tetrahedron 1999, 55, 2157–2170.
27a : X = OH
27b : X = NH2
26a : X = OH
26b : X = NH2
c
Scheme 4. Reagents and conditions: (a) Ph3P, DIAD, THF, rt, 28%; (b) 1 N NaOH,
MeOH; (c) 2,4,6-triisopropylbenzenesulfonyl chloride, DMAP, Et3N, MeCN, 0 °C–rt,
24 h then 30% NH4OH, rt, 5 h; (d) 4 N HCl, MeOH, rt.
tube, 16–36 h) to afford 21b, 22b, and 23b; deprotection of these
derivatives with 4 N HCl in methanol at room temperature pro-
vided the free carbocyclic nucleosides 21c, 22c, and 23c in high
yields ranging from 95% to 99%.
15. Note: The stereochemistry of cyclopentenol 10 and 12 was determined on the
basis of nuclear Overhauser effect (1D-NOE).
16. Nokami, J.; Matsuura, H.; Takahashi, H.; Yamashita, M. Synlett 1994, 491–493.
17. The allylic migration product has been reported for the first time from the
similar synthesis of NPA or NPA’s derivatives. This observation could be
explained by invoking a SN20 reaction mechanism for the Mitsunobu coupling
reaction with allylic alcohols. For a reference pertinent to this issue, see: Shull,
B. K.; Sakai, T.; Nichols, J. B.; Koreeda, M. J. Org. Chem. 1997, 62, 8294–8303.
18. Data for compound 18a: 1H NMR (600 MHz, CD3OD) d 8.20 (s, 1H), 7.98 (s, 1H),
5.90 (m, 1H), 5.46 (m, 1H), 4.44 (s, 1H), 4.31 (dd, J = 15 Hz, 2H), 0.92 (s, 3H);
Compound 18b: 1H NMR (500 MHz, CD3OD) d 8.24 (s, 1H), 8.22 (s, 1H), 6.65 (d,
J = 5.5 Hz, 1H), 6.20 (d, J = 5.5 Hz, 1H), 4.25 (s, 1H), 4.04 (d, J = 10.5 Hz, 1H), 3.98
The synthesis of the cytosine and uracil derivatives of 20-b-C-
methyl-neplanocin A was carried out using a similar strategy,
(Scheme 4). Briefly, the cyclopentenol 12 was coupled with N-Bz
uracil followed by deprotection of the benzoyl group, tert-butyl
diphenyl silyl group, and isopropylidene groups to yield compound
27a. Compound 26a was converted to the corresponding cytosine
analogue 27b by the reported method.20