J. S. Yadav et al. / Tetrahedron Letters 49 (2008) 4296–4301
4301
10. (a) Kishore Kumar, G. D.; Baskaran, S. Synlett 2004, 1719–1722; (b) Kishore
Kumar, G. D.; Baskaran, S. J. Org. Chem. 2005, 70, 4520–4523; (c) Kozhevnikova,
E. F.; Derouane, E. G.; Kozhevnikov, I. V. Chem. Commun. 2002, 1178–1179; (d)
Firouzabadi, H.; Iranpoor, N.; Amani, K. Synthesis 2003, 408–412.
11. (a) Yadav, J. S.; Raghavendra, S.; Satyanarayana, M.; Balanarsaiah, E. Synlett
2005, 2461–2464; (b) Yadav, J. S.; Satyanarayana, M.; Balanarsaiah, E.;
Raghavendra, S. Tetrahedron Lett. 2006, 47, 6095–6098.
12. Experimental procedure: A mixture of 1,3-dicarbonyl compound (1.0 mmol),
alcohol (1.0 mmol) and PMA/SiO2 (10 mol %) in dichloroethane (5 mL) was
stirred at room temperature for the appropriate time (Tables 1 and 2). After
completion of the reaction as indicated by TLC, the reaction mixture was
filtered and diluted with water and extracted with dichloromethane
(2 Â 15 mL). The combined organic layers were dried over anhydrous
Na2SO4, concentrated in vacuo and purified by column chromatography on
silica gel (Merck, 100–200 mesh, ethyl acetate/hexane, 1:9) to afford pure 2-
substituted 1,3-dicarbonyl compounds. The spectroscopic data of the products
were identical with the data reported in the literature.
and mass spectroscopy. The effects of various silica-supported acid
catalysts such as HClO4/SiO2, H2SO4/SiO2 and NaHSO4/SiO2 were
screened for this reaction. Of these catalysts, PMA/SiO2 was found
to give the best results in terms of conversion and reaction time.
The scope and generality of this process was illustrated with
respect to various 1,3-dicarbonyl compounds and benzylic as well
as propargylic alcohols, and the results are presented in Tables 1
and 2.12 The advantages of this method are the ready availability
of alcohols, high atom efficiency, no salt formation and water as
the only by-product.
In summary, we have described a simple, convenient and effi-
cient protocol for the benzylation and propargylation of 1,3-dicar-
bonyl compounds with benzylic and propargylic alcohols using
recyclable PMA/SiO2 as the catalytic system. In addition to its
efficiency, simplicity and mild reaction conditions, this method
provides high yields of 2-benzyl- and 2-propargyl-1,3-dicarbonyl
compounds in short reaction times with high selectivity.
Spectral data for selected products:Compound 3b: Ethyl 2-benzhydryl-3-
oxobutanoate: Colourless solid, mp 89–91 °C; IR (KBr): 3084, 2993, 2955, 1736,
1600, 1456, 1363, 1320, 1246, 1143, 1013, 914, 840, 753, 700, 631, 542 cmÀ1
;
1H NMR (300 MHz, CDCl3): d 0.98 (t, 3H, J = 6.7 Hz), 2.06 (s, 3H), 3.95 (q, 2H,
J = 6.7 Hz), 4.42 (d, 1H, J = 12.0 Hz), 4.72 (d, 1H, J = 12.0 Hz), 7.10–7.27 (m,
10H); 13C NMR (75 MHz, CDCl3): d 13.7, 29.8, 50.8, 61.3, 65.1, 126.7, 126.8,
127.6, 127.7, 128.4, 128.7, 141.1, 141.5, 167.5; EIMS (M+Na): m/z: 319; HRMS
calcd for C19H20O3Na: 319.1310. Found: 319.1296.
Acknowledgement
Compound 3f: 1,3-Diphenyl-2-(1-phenylpropyl)propane-1,3-dione: Colourless
solid, mp 154–156 °C; IR (KBr): 3061, 2959, 2870, 1684, 1593, 1447, 1270,
1190, 1021, 962, 840, 760, 684, 598 cmÀ1 1H NMR (300 MHz, CDCl3): d 0.71 (t,
;
T.P., K.V.R.R., K.P. and G.G.K.S.N.K. thank CSIR, New Delhi for the
award of fellowships.
3H, J = 6.7 Hz), 1.55–1.83 (m, 2H), 3.75–3.85 (m, 1H), 5.49 (d, 1H, J = 10.5 Hz),
7.05–7.57 (m, 11H), 7.67–7.74 (m, 2H), 8.02–8.08 (m, 2H); 13C NMR (75 MHz,
CDCl3): d 11.9, 27.0, 29.7, 48.7, 64.6, 126.6, 128.2, 128.3, 128.4, 128.6, 128.8,
132.8, 133.5, 137.0, 137.4, 141.2, 194.3, 195.1; EIMS (M+Na): m/z: 365; HRMS
calcd for C24H22O2Na: 365.1517. Found: 365.1507.
References and notes
Compound 3h: 1,3-Diphenyl-2-(1-phenylethyl)propane-1,3-dione: Colourless
solid, mp 126–128 °C; IR (KBr): 3061, 3028, 2963, 1692, 1594, 1446, 1324,
1. (a) Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921–2944; (b) Ma, S.; Yu,
S.; Peng, Z.; Guo, H. J. Org. Chem. 2006, 71, 9865–9868.
1271, 1197, 972, 754, 697, 602, 539 cmÀ1 1H NMR (200 MHz, CDCl3): d 1.33 (d,
;
3H, J = 7.5 Hz), 4.02–4.12 (m, 1H), 5.44 (d, 1H, J = 9.8 Hz), 7.01–7.56 (m, 11H),
7.70–7.77 (m, 2H), 7.99–8.07 (m, 2H); 13C NMR (75 MHz, CDCl3): d 20.5, 41.3,
65.2, 125.0, 126.6, 127.7, 128.3, 128.4, 128.5, 128.8, 132.9, 133.5, 135.1, 136.1,
137.2, 194.6, 195.0; EIMS (M+Na): m/z: 351. HRMS calcd for C23H20O2Na:
351.1360. Found: 351.1352.
2. (a) Westermaier, M.; Mayr, H. Org. Lett. 2006, 8, 4791–4794; (b) Bandini, M.;
Melloni, A.; Umani-Ronchi, A. Org. Lett. 2004, 6, 3199–3202; (c) De la Herrán,
G.; Segura, A.; Csáky, A. G. Org. Lett. 2007, 9, 961–964.
3. (a) Manabe, K.; Kobayashi, S. Org. Lett. 2003, 5, 3241–3244; (b) Mukhopadhyay,
M.; Iqbal, J. Tetrahedron Lett. 1995, 36, 6761–6764.
Compound 4a: Methyl 2-acetyl-3,5-diphenyl-4-pentynoate: Liquid, IR (KBr): m
4. (a) Bisaro, F.; Pretat, G.; Vitale, M.; Poli, G. Synlett 2002, 1823–1826; (b) Yasuda,
M.; Somyo, T.; Baba, A. Angew. Chem., Int. Ed. 2006, 45, 793–796; (c) Rueping,
M.; Nachtsheim, B. J.; Kuenkel, A. Org. Lett. 2007, 9, 825–828.
5. (a) Huang, W.; Wang, J.; Shen, Q.; Zhou, X. Tetrahedron Lett. 2007, 48, 3969–
3973; (b) Jana, U.; Biswas, S.; Maiti, S. Tetrahedron Lett. 2007, 48, 4065–4069;
(c) Motokura, K.; Fujita, N.; Mori, K.; Mizugaki, T.; Ebitani, K.; Kaneda, K. Angew.
Chem., Int. Ed. 2006, 45, 2605–2609.
3028, 2921, 2851, 1739, 1598, 1490, 1439, 1354, 1280, 1249, 1149, 755 cmÀ1
.
1H NMR (200 MHz, CDCl3): d 2.42 (s, 3H), 3.81 (s, 3H), 3.97 (d, 1H, J = 10.1 Hz),
4.60 (d, 1H, J = 10.1 Hz), 7.25–7.45 (m, 10H). 13C NMR (75 MHz, CDCl3): d 24.0,
35.1, 75.5, 84.8, 85.4, 126.6, 127.7, 128.2, 128.3, 128.6, 128.8, 131.6, 138.1,
201.5; LCMS: m/z: (M+Na) 329. HRMS calcd for C20H18O3Na: 329.1153. Found:
329.1155.
Compound 4m: 3-[3-Phenyl-1-(2-phenyl-1-ethynyl)-(E)-2-propenyl]-2,4-
pentanedione: Liquid, IR (KBr): m 3027, 2923, 2853, 1702, 1597, 1490, 1444,
6. Sanz, R.; Miguel, D.; Martinez, A.; Alvarez-Gutierrez, J. M.; Rodriguez, F. Org.
Lett. 2007, 9, 727–730.
7. Misono, M.; Ono, I.; Koyano, G.; Aoshima, A. Pure Appl. Chem. 2000, 72, 1305.
8. Kozhevnikov, I. V. Chem. Rev. 1998, 98, 171–198.
9. (a) Saidi, M. R.; Torkiyan, L.; Azizi, N. Org. Lett. 2006, 8, 2079–2082; (b)
Baskaran, S.; Kumar, G. D. K. Chem. Commun. 2004, 1026–1027; (c) Kita, Y.;
Tohma, H.; Kumar, G. A.; Hamamoto, H. Chem. Eur. J. 2002, 8, 5377–5383; (d)
Rafiee, E.; Jafari, H. Bioorg. Med. Chem. Lett. 2006, 16, 2463–2466; (e) Okumura,
K.; Yamashita, K.; Hirano, M.; Niva, M. Chem. Lett. 2005, 34, 716–717.
1418, 1356, 1262, 1151, 967, 755 cmÀ1 1H NMR (500 MHz, CDCl3): d 7.45–7.21
.
(m, 10H, Ar), 6.75 (dd, 1H, dd, 1H, J = 1.0, 15.7, Hz, H6), 6.06 (dd, 1H, J = 6.7,
15.7 Hz, H5), 4.31 (ddd, 1H, J = 1.0, 6.7, 10.3 Hz, H4), 3.96 (d, 1H, J = 10.3 Hz,
H10), 2.34 (s, 3H, Me), 2.23 (s, 3H, Me). 13C NMR (75 MHz, CDCl3): d 28.8, 34.7,
73.6, 85.8, 86.4, 122.5, 124.6, 126.4, 127.9, 128.2, 128.5, 128.6, 131.6, 133.1,
136.1, 201.2. LCMS: m/z: (M+Na) 339. HRMS calcd for C22H20O2Na: 339.1360.
Found: 339.1366.