4834
J . Org. Chem. 1999, 64, 4834-4839
Asym m etr ic Syn th esis w ith th e En zym e Copr in u s P er oxid a se:
Kin etic Resolu tion of Ch ir a l Hyd r op er oxid es a n d En a n tioselective
Su lfoxid a tion
Waldemar Adam,* Cordula Mock-Knoblauch, and Chantu R. Saha-Mo¨ller
Institut fu¨r Organische Chemie der Universita¨t Wu¨rzburg, Am Hubland, D-97074 Wu¨rzburg, Germany
Received February 2, 1999
The enzyme Coprinus peroxidase (CiP) was employed for the kinetic resolution of racemic
hydroperoxides 1 and the asymmetric sulfoxidation of prochiral sulfides 4. Eleven hydroperoxides
1a -k were reduced by CiP and guaiacol as reductant under conditions of kinetic resolution with
enantioselectivities of up to >98% for the (S)-hydroperoxide 1 and 90% for the (R)-alcohol 2. In the
absence of a reductant, the hydroperoxide 1a afforded with CiP enantiomerically enriched
hydroperoxide 1a (ee up to 54%) and alcohol 2a (ee up to 40%), as well as ketone 3a (which is also
formed simultaneously in all other reactions) and molecular oxygen. Catalase activity was
established for CiP with hydrogen peroxide. When aryl alkyl sulfides 4 were used as oxygen
acceptors, three products, sulfoxides 5, alcohols 2, and hydroperoxides 1, were obtained, all in
enantiomerically enriched form. The highest ee value (89%) was achieved for the sulfoxide derived
from naphthyl methyl sulfide (4f). Thus, CiP may be utilized for the asymmetric synthesis of optically
active hydroperoxides 1, alcohols 2, and sulfoxides 5.
In tr od u ction
enzyme. Moreover, many enzymes accept only one of the
substrate enantiomers, such that the other antipode is
usually inaccessible. However, recently we have discov-
ered that the microorganism Bacillus subtilis possesses
peroxidase activity in which the opposite enantiomer of
the hydroperoxide is recognized as by the horseradish
peroxidase.7 This favorable finding encouraged us to
screen other peroxidases for their selectivity and sub-
strate acceptance to enable the biocatalytic synthesis of
both optically active enantiomers for a wide variety of
functionalized substrates.
The Coprinus peroxidase (CiP), which has been isolated
from the basidiomycete Coprinus cinereus,8 is known
from its X-ray crystal structure9 to have a rather large
substrate opening and should, therefore, be a favorable
candidate to accept a broad range of substrates, also
sterically encumbered ones. We have applied the enzyme
Coprinus peroxidase for the kinetic resolution of racemic
hydroperoxides and the enantioselective oxidation of
prochiral sulfides and report herein our results.
In recent years, enzymes have increasingly been used
for the synthesis of optically active compounds.1 In
particular, peroxidases have proven to be versatile bio-
catalysts for a number of redox transformations.2 Among
the best-known peroxidases is chloroperoxidase from
Caldariomyces fumago (CPO), which, for example, cata-
lyzes enantioselective epoxidations,3 sulfoxidations,4 and
benzylic hydroxylations.5 Also, horseradish peroxidase
(HRP) has been intensively studied for the kinetic
resolution of hydroperoxides.6 In many of these reactions,
good to excellent enantioselectivities have been obtained;
unfortunately, this selectivity advantage comes at the
dear price of limited scope of substrate acceptance by the
* To whom correspondence should be addressed. E-mail: adam@
chemie.uni-wuerzburg.de. Fax: +49-931-8884756.
(1) (a) Enzymes in Synthetic Organic Chemistry; Wong, C. H.,
Whitesides, G. M., Eds.; Pergamon Press: Oxford, 1994. (b) Drautz,
K.; Waldmann, H. Enzyme Catalysis in Organic Synthesis; VCH:
Weinheim, 1995.
(2) (a) van Deurzen, M. P. J .; van Rantwijk, F.; Sheldon, R. A.
Tetrahedron 1997, 39, 13183-13220. (b) Adam, W.; Lazarus, M.; Saha-
Mo¨ller, C. R.; Weichold, O.; Hoch, U.; Ha¨ring, D.; Schreier, P. In
Advances in Biochemical Engineering/ Biotechnology; Faber, K., Ed.;
Springer-Verlag: Heidelberg, 1999; Vol. 63, p 73.
(3) (a) Colonna, S.; Gaggero, N.; Casella, L.; Carrea, G.; Pasta, P.
Tetrahedron: Asymmetry 1993, 4, 1325-1330. (b) Allain, E. J .; Hager,
L. P.; Deng, L.; J acobsen, E. N. J . Am. Chem. Soc. 1993, 115, 4415-
4416. (c) Lakner, F. J .; Hager, L. P. J . Org. Chem. 1996, 61, 3923-
3925. (d) Dexter, A. F.; Lakner, F. J .; Campbell, R. A.; Hager, L. P. J .
Am. Chem. Soc. 1995, 117, 6412-6413.
(4) (a) Colonna, S.; Gaggero, N.; Casella, L.; Carrea, G.; Pasta, P.
Tetrahedron: Asymmetry 1992, 3, 95-106. (b) Fu, H.; Kondo, H.;
Ichikawa, Y.; Look, G. C.; Wong, C. H. J . Org. Chem. 1992, 57, 7265-
7270. (c) van Deurzen, M. P. J .; Remkes, I. J .; van Rantwijk, F.;
Sheldon, R. A. J . Mol. Catal. A: Chemical 1997, 117, 329-337.
(5) (a) Miller, V. P.; Tschirret-Guth, R. A.; Ortiz de Montellano, P.
R. Arch. Biochem. Biophys. 1995, 319, 333. (b) Zaks, A.; Dodds, D. R.
J . Am. Chem. Soc. 1995, 117, 10419-10424.
Resu lts a n d Discu ssion
Kin etic Resolu tion of Hyd r op er oxid es. In our
efforts to provide optically enriched hydroperoxides,
which may be used as oxidants in asymmetric synthe-
sis,10 we have shown that the kinetic resolution of racemic
hydroperoxides with horseradish peroxidase (HRP) con-
stitutes a useful way to achieve this goal.6 Unfortunately,
(7) Adam, W.; Boss, B.; Harmsen, D.; Lukacs, Z.; Saha-Mo¨ller, C.
R.; Schreier, P. J . Org. Chem. 1998, 63, 7598-7599.
(8) (a) Shinmen, Y.; Asami, S.; Amachi, T.; Shimizu, S.; Yamada,
H. Agric. Biol. Chem. 1986, 50, 247-249. (b) Morita, Y.; Yamashita,
H.; Mikami, B.; Iwamoto, H.; Aibara, S.; Terada, M.; Minami, J . J .
Biochem. 1988, 103, 693-699.
(6) (a) Adam, W.; Hoch, U.; Lazarus, M.; Saha-Mo¨ller, C. R.;
Schreier, P. J . Am. Chem. Soc. 1995, 117, 11898-11901. (b) Adam,
W.; Hoch, U.; Humpf, H.-U.; Saha-Mo¨ller, C. R.; Schreier, P. J . Chem.
Soc., Chem. Commun. 1996, 2701-2702. (c) Hoch, U.; Adam, W.; Fell,
R. T.; Saha-Mo¨ller, C. R.; Schreier, P. J . Mol. Catal. A, Chem. 1997,
117, 321-328.
(9) (a) Petersen, J . F. W.; Kadziola, A.; Larsen, S. FEBS Lett. 1994,
339, 291-296. (b) Abelskov, A. K.; Smith, A. T.; Rasmussen, C. B.;
Dunford, H. B.; Welinder, K. G. Biochemistry 1997, 36, 9453-9463.
(10) (a) Adam, W.; Korb, M. N.; Roschmann, K. J .; Saha-Mo¨ller, C.
R. J . Org. Chem. 1998, 63, 3423-3428. (b) Adam, W.; Korb, M. N.
Tetrahedron: Asymmetry 1997, 8, 1131-1142.
10.1021/jo990201p CCC: $18.00 © 1999 American Chemical Society
Published on Web 06/06/1999