Notes and references
z Arylated alkyne 30 was synthesised by a Sonogashira coupling of
dimethyl propargylmalonate 12 with iodobenzene (see ESI for detailsw).
1. For reviews see: (a) K. C. Nicolaou, D. J. Edmonds and
P. G. Bulger, Angew. Chem., Int. Ed., 2006, 45, 7134;
(b) L. F. Tietze, Chem. Rev., 1996, 96, 115.
2. For reviews on multi-catalyst cascades, see: (a) S. F. Mayer,
W. Kroutil and K. Faber, Chem. Soc. Rev., 2001, 30, 332;
(b) J. M. Lee, Y. Na, H. Han and S. Chang, Chem. Soc. Rev.,
2004, 33, 302; (c) L. Veum and U. Hanefeld, Chem. Commun., 2006,
825. For selected examples: (d) S. Chercheja and P. Eilbracht, Adv.
Synth. Catal., 2007, 349, 1897(e) I. Ibrahem and A. Cordova,
Angew. Chem., Int. Ed., 2006, 45, 1952(f) B. G. Jellerichs,
J.-R. Kong and M. J. Krische, J. Am. Chem. Soc., 2003, 125,
7758(g) B. M. Trost, E. J. McEachern and F. D. Toste, J. Am.
Chem. Soc., 1998, 120, 12702(h) M. Sawamura, M. Sudoh and
Y. Ito, J. Am. Chem. Soc., 1996, 118, 3309.
3. For reviews, see: (a) D. Enders, C. Grondal and M. R. M. Huttl,
Angew. Chem., Int. Ed., 2007, 46, 1570; (b) S. Mukherjee,
J. W. Yang, S. Hoffmann and B. List, Chem. Rev., 2007, 107,
5471; (c) B. List, Acc. Chem. Res., 2004, 37, 548; (d)
Z. Rappoport, The Chemistry of Enamines (Part 1 & 2), Wiley,
New York, 1994; (e) G. A. Cooke, Enamines: Synthesis Structure
and Reactions, Marcel Dekker, New York, 1988. For examples of
cascades in asymmetric synthesis, see: (f) S. Cabrera, J. Aleman,
P. Bolze, S. Bertelsen and K. A. Jørgensen, Angew. Chem., Int.
Ed., 2008, 47, 121(g) H. Jiang, J. B. Nielsen, M. Nielsen and
K. A. Jørgensen, Chem. Eur. J., 2007, 13, 9068(h) S. Fustero,
D. Jimenez, J. Moscardo, S. Catalan and C. D. Pozo, Org. Lett.,
2007, 9, 5283(i) Y. Huang, A. M. Walji, C. H. Larsen and D. W.
C. MacMillan, J. Am. Chem. Soc., 2005, 127, 15051.
4. A. Erkkila, I. Majander and P. M. Pihko, Chem. Rev., 2007, 107,
5416.
5. For selected examples describing the metal catalysed addition of
alkyl enol ethers, silyl enol ethers, silyl ketene amides and enam-
ines to triple bonds see: (a) C. Nevado, D. J. Cardenas and
A. M. Echavarren, Chem. Eur. J., 2003, 9, 2627;
(b) S. T. Staben, J. J. Kennedy-Smith, D. Huang, B. K. Corkey,
R. L. LaLonde and F. D. Toste, Angew. Chem., Int. Ed., 2006, 45,
5991; (c) E. C. Minnihan, S. L. Colletti, F. D. Toste and
H. C. Shen, J. Org. Chem., 2007, 72, 6287; (d) T. J. Harrison,
B. O. Patrick and G. R. Dake, Org. Lett., 2007, 9, 367;
(e) P. Magnus, B. Mugrage, M. DeLuca and G. A. Cain, J. Am.
Chem. Soc., 1989, 111, 786. For an example of a cascade reaction
initiated by gold(I) activation of a tethered alkyne see: (f) T. Yang,
L. Campbell and D. J. Dixon, J. Am. Chem. Soc., 2007, 129, 12070
and references cited therein.
Scheme 2 Scope of the combination catalysis cascade to cyclopentenes.
Scheme 3 Combination catalysis cascade of a non-terminal alkyne.z
6. For a similar strategy using a Michael addition reaction and a
subsequent radical cyclisation cascade, see: (a) F. Beaufils,
F. Denes and P. Renaud, Angew. Chem., Int. Ed., 2005, 44,
5273; (b) F. Beaufils, F. Denes, B. Becattini, P. Renaud and
K. Schenk, Adv. Synth. Catal., 2005, 347, 1587.
7. The intermediacy of a cyclopropyl metal-carbene complex is also
possible but would not necessarily alter the reaction outcome; see
for example ref. 5a.
8. During the preparation of this manuscript a paper describing the
carbocyclisation of aldehydes with alkynes using secondary amine
and gold(I) catalysis was published: (a) J. T. Binder, B. Crone,
T. T. Haug, H. Menz and S. F. Kirsch, Org. Lett., 2008, 10, 1025.
For other reports where transition metal catalysis and aminoca-
talysis have been combined, see ref. 2e and (b) Q. Ding and J. Wu,
Org. Lett., 2007, 9, 4959.
9. For an example, see: A. McNally, B. Evans and M. J. Gaunt,
Angew. Chem., Int. Ed., 2006, 45, 2116.
10. (a) F. Bihelovic, R. Matovic, B. Vulovic and R. N. Saicic, Org.
Lett., 2007, 9, 5063; (b) D. Liu, F. Xie and W. Zhang, Tetrahedron
Lett., 2007, 48, 7591.
11. ps-BEMP = 2-tert-butylimino-2-diethylamino-1,3-dimethylperhydro-
1,3,2-diazaphosphorine, polymer-bound and available from Fluka.
12. D. Bensa, T. Constantieux and J. Rodriguez, Synthesis, 2004, 923.
13. F. H. Jardine, L. Rule and A. G. Vohra, J. Chem. Soc. A, 1970, 238.
14. (a) D. Bouyssi, N. Monteiro and G. Balme, Tetrahedron Lett.,
1999, 40, 1297; (b) B. Clique, N. Monteiro and G. Balme, Tetra-
hedron Lett., 1999, 40, 1301; (c) N. Coia, D. Bouyssi and
G. Balme, Eur. J. Org. Chem., 2007, 3158.
either OTf or OMe). This hypothesis was supported when a
mixture of (Ph3P)3CuCl15 and AgOTf was tested for perfor-
mance in the cascade and a comparable result (3 h reaction
time, 80% yield) with respect to the Cu(OTf)2–PPh3 system was
obtained. Furthermore, 31P NMR experiments of reaction
systems using Cu(OTf)2–PPh3 or (CuOTf)2ꢁC6H6–PPh3 identi-
fied complexes common to both (see ESI for detailsw).
In summary, a mutually compatible combination of pyrro-
lidine and Cu(OTf)2–PPh3 catalysts has been identified that
promotes a new carboannulation to cyclopentene products
from a,b-unsaturated ketones and propargylated carbon
acids. Initiated through a Michael addition to the iminium
ion activated enone, the enamine intermediate is poised to
undergo C–C bond formation with the copper(I) activated
alkyne. Subsequent protonolysis, hydrolysis and isomerisation
provide the cyclopentene products in moderate to good yields.
Further studies to widen the range of substrates amenable to
this type of catalysis cascade are under investigation and the
results will be reported in due course.
We thank the European Commission (Marie Curie IEF to
AF), Universities UK, the University of Manchester, and
AstraZeneca (studentship to TY) for support.
15. W. T. Reichie, Inorg. Chim. Acta, 1971, 5, 325.
ꢀc
This journal is The Royal Society of Chemistry 2008
Chem. Commun., 2008, 2923–2925 | 2925