Synthesis, structure, and photoluminescence
Russ.Chem.Bull., Int.Ed., Vol. 61, No. 1, January, 2012
97
H, 4.28. C20H15N5O. Calculated (%): C, 70.38; H, 4.40.
1Н NMR, : 10.1 (s, 1 Н, ОН); 8.65 (d, 1 Н arom., J = 4.4 Hz);
8.12 (d, 1 Н arom., J = 8.0 Hz); 7.90 (dt, 1 Н arom., J = 7.2 Hz,
J = 0.8 Hz); 7.80 (d, 1 Н arom., J = 7.2 Hz); 7.40 (m, 2 Н arom.);
7.27 (t, 1 Н arom., J = 8.4 Hz); 7.24—7.19 (m, Н arom. +
+ С(5)H); 6.95 (m, 2 Н arom. + 1 H, NH); 6.85 (t, 1 Н arom.,
J = 7.6 Hz); 6.80 (t, 1 Н arom., J = 7.2 Hz). 13С NMR, : 161.6,
155.2, 151.1, 150.0, 149.9, 143.7, 137.5, 132.3, 130.6, 127.7,
126.1, 124.6, 124.4, 122.2, 119.5, 118.3, 116.3, 115.0, 110.0,
67.7. IR, /cm–1: 3270, 1629, 1597, 1523, 1457, 1361, 1292,
1281, 1236, 1159, 742.
4
3
2
1
400
500
600
700
/nm
2ꢀ(2ꢀPyridinꢀ3ꢀylꢀ5,6ꢀdihydro[1,5ꢀc]quinazolinꢀ5ꢀyl)phenol
(2). M.p. 245 С (EtOH). The yield was 81%. Found (%):
C, 70.29; H, 4.11. C20H15N5O. Calculated (%): C, 70.38;
Fig. 1. Luminescence spectra of solutions of compound 3 in
various solvents: THF (1), MeCN (2), DMF (3), and DMSO (4).
1
H, 4.40. Н NMR, : 10.04 (s, 1 H, ОН); 9.15 (s, 1 Н arom.);
8.61 (d, 1 Н arom., J = 4.8 Hz); 8.30 (dt, 1 Н arom., J = 8.0 Hz,
J = 0.8 Hz); 7.78 (d, 1 Н arom., J = 8.0 Hz); 7.48 (dd, 1 Н arom.,
J = 7.4 Hz, J = 8.2 Hz); 7.37 (s, 1 Н, С(5)H); 7.24 (dt, 1 Н
arom., J = 8.2 Hz, J = 0.8 Hz); 7.18—7.05 (m, 2 Н arom.); 6.88
(t, 2 Н arom., J = 7.6 Hz); 6.82—6.78 (m, 1 Н arom. + NH);
6.71 (t, 1 Н arom., J = 7.6 Hz). 13С NMR, : 159.7, 155.3,
151.7, 150.9, 149.9, 143.7, 138.3, 132.6, 130.7, 127.5,
126.0, 124.4, 123.9, 120.6, 119.5, 118.3, 116.2, 115.1, 109,8,
67.9. IR, /cm–1: 3402, 1624, 1602, 1512, 1458, 1412, 1350,
1248, 750.
2ꢀ(2ꢀPyridinꢀ4ꢀylꢀ5,6ꢀdihydro[1,5ꢀc]quinazolinꢀ5ꢀyl)phenol (3).
M.p. 251 С (EtOH). The yield was 87%. Found (%): C, 70.03;
H, 4.54. C20H15N5O. Calculated (%): C, 70.38; H, 4.40. 1Н NMR,
: 10.04 (br.s, 1 H, ОН); 8.66 (d, 2 Н arom., J = 5.6 Hz); 7.90
(d, 2 Н arom., J = 6.0 Hz); 7.79 (d, 1 Н arom., J = 6.8 Hz); 7.40
(s, 1 Н arom.); 7.25 (t, 1 Н, J = 7.6 Hz); 7.20—7.16 (m, 1 Н arom.+
+1 H (С(5)H)); 6.95—6.85 (m, 3 Н arom. + NH); 6.73
(t, 1 Н arom., J = 7.2 Hz). 13С NMR, : 159.6, 155.4,
151.3, 150.8, 150.0, 147.5, 143.7, 134.1, 132.5, 130.6,
127.5, 126.2, 124.5, 124.4, 119.7, 118.4, 116.3, 115.0, 109.7,
67.6. IR, /cm–1: 3402, 1624, 1600, 1512, 1458, 1414, 1350,
1248, 750.
imum is observed in the luminescence spectrum in lowꢀ
polarity THF (Fig. 1, curve 1). On going to solvents of
higher polarity (DMSO, DMF, acetonitrile) (Fig. 1,
curves 2—4), two emission maxima appear, which can be
due to the existence of two tautomers in the excited state.
Thus, it was found that 5ꢀphenylꢀ2ꢀpyridylꢀ5,6ꢀdiꢀ
hydro[1,2,4]triazolo[1,5ꢀc]quinazolines represent a new
class of compounds luminescing in the solid state and in
solutions. These compounds can be recommended for use
as complexation substances in luminescence analysis
and as molecular probes and fluorescent labels in biologiꢀ
cal assays.
Experimental
Nitriles of pyridinecarboxylic acids (Merck) were used as the
starting compounds. Hydrazides of 2ꢀaminocarboxylic acids were
synthesized according to earlier described procedures.11 Solvents
were purified by standard procedures.12
IR spectra were recorded in the 4000—400 cm–1 region
on a Nicollet Nexus 470 spectrophotometer (KBr pellets).
1H and 13C NMR spectra were obtained on a Bruker VXRꢀ400
spectrometer (1Н, 400 MHz; 13С, 75 MHz) using DMSOꢀd6
as a solvent and Me4Si as an internal standard. Absorption
spectra were studied on a Lambdaꢀ9 UV/VIS/NIR spectroꢀ
photometer (Perkin—Elmer). The luminescence spectra of
solid samples were detected on an SDLꢀ1 diffraction spectroꢀ
meter (LOMO, Russia) with a FEUꢀ79 photomultiplier tube.
Excitation spectra were recorded on a FluorologꢀFL 3ꢀ22 inꢀ
strument with a xenon lamp (450 W). The standard for meaꢀ
suring quantum yields was quinine sulfate in a 0.1 М solution
of H2SO4.
Synthesis of 5ꢀphenylꢀ2ꢀpyridylꢀ5,6ꢀdihydro[1,2,4]triazoloꢀ
[1,5ꢀc]quinazolines 1—8 (general procedure). 5ꢀ(2ꢀAminoꢀ4ꢀRꢀ
phenyl)ꢀ3ꢀpyridylꢀ1Нꢀ1,2,4ꢀtriazole (4 mmol) was dissolved in
hot ethanol (20 mL), and aldehyde (4.2 mmol) was added. The
reaction mixture was magnetically stirred for 1 h on heating. The
solution was cooled down, and the precipitate that formed was
filtered off, washed with cold ethanol, and dried in vacuo. The
yields of the products were 1.0—1.2 g (75—87% based on the
starting triazole).
2ꢀ(9ꢀMethylꢀ2ꢀpyridinꢀ2ꢀylꢀ5,6ꢀdihydro[1,5ꢀc]quinazolinꢀ5ꢀ
yl)phenol (4). M.p. 209 С (EtOH). The yield was 75%.
Found (%): C, 71.09; H, 4.66. C21H17N5O. Calculated (%):
C, 70.98; H, 4.79. 1Н NMR, : 10.03 (s, 1 H, ОН); 8.61 (d, 1 Н
arom., J = 5.2 Hz); 8.08 (d, 1 Н arom., J = 10.8 Hz); 7.90
(dt, 1 Н arom., J = 6.8 Hz, J = 0.8 Hz); 7.64 (s, 1 Н arom.); 7.43
(dt, 1 Н arom., J =5.6 Hz, J = 0.8 Hz); 7.25—7.15 (m, 1 Н arom. +
+ 1 H, С(5)H); 7.12—6.95 (m, 1 Н arom. + NH); 6.91—6.81
(m, 3 Н arom.); 6.73 (t, 1 Н arom., J = 7.6 Hz); 2.27 (s, 3 Н,
СН3). IR, /cm–1: 3386, 1630, 1600, 1516, 1504. 1418, 1350,
1290, 1248, 750.
2ꢀ(9ꢀFluoroꢀ2ꢀpyridinꢀ2ꢀylꢀ5,6ꢀdihydro[1,5ꢀc]quinazolinꢀ5ꢀ
yl)phenol (5). M.p. 241 С (EtOH). The yield was 80%.
Found (%): C, 67.02; H, 3.79. C20H14FN5O. Calculated (%): C,
66.85; H, 3.90. 1Н NMR, : 10.05 (br.s, 1 H, ОН); 8.61
(d, 1 Н arom., J = 4.0 Hz); 8.07 (d, 1 Н arom., J = 7.2 Hz); 7.89
(dt, 1 Н arom., J = 7.2 Hz, J = 1.6 Hz); 7.54 (dd, 1 Н arom.,
J = 8.4 Hz, J = 2.8 Hz); 7.42 (m, 1 Н arom.); 7.34 (s, 1 Н arom.);
7.20—7.05 (m, 2 Н arom. + 1 H, С(5)H); 6.95—6.82
(m, 2 Н arom. + NH); 6.75 (t, 1 Н arom., J = 7.6 Hz). IR,
/cm–1: 3280, 1638, 1600, 1522, 1456, 1422, 1356, 1284,
1196, 746.
2ꢀ(2ꢀPyridinꢀ2ꢀylꢀ5,6ꢀdihydro[1,5ꢀc]quinazolinꢀ5ꢀyl)phenol (1).
M.p. 237 С (EtOH). The yield was 85%. Found (%): C, 70.22;
2ꢀ(9ꢀChloroꢀ2ꢀpyridinꢀ2ꢀylꢀ5,6ꢀdihydro[1,5ꢀc]quinazolinꢀ5ꢀ
yl)phenol (6). M.p. 235 С (EtOH). The yield was 84%.