PRIMARY KINETIC HYDROGEN ISOTOPE EFFECT
Nick Backstrom respectively). We thank Raman Sharma and
Michelle Thorley for valuable discussions throughout this work
and Hannah Rablen for valuable experimental assistance. The
polarimeter was a generous gift from Astra-Zeneca, Alderley Park.
[40] C. G. Swain, E. C. Stivers, J. F. Reuwer, L. F. Schaad, J. Am. Chem. Soc.
1958, 80, 5885–5893.
[41] A. Thibblin, J. Phys. Org. Chem. 1988, 1, 161–167.
[42] A. Thibblin, P. Alhberg, Chem Soc. Reviews 1989, 18, 209–224.
[43] H. H. Koch, D. B. Dahlberg, J. Am. Chem. Soc. 1980, 102, 6102–6017.
[44] P. F. Fitzpatrick, M. Allen, A. Nagpal, M. P. Valley, Arch. Biochem.
Biophys. 2005, 433, 157–165.
REFERENCES
[45] M. P. Valley, S. E. Tichy, P. F. Fitzpatrick, J. Am. Chem. Soc. 2005, 127,
2062–2066.
[46] D. T. Major, D. M. York, J. Gao, J. Am. Chem. Soc. 2005, 127,
16374–16375.
[47] For nitrophenylethane, F. G. Bordwell, W. J. Boyle, J. Am. Chem. Soc.
1972, 94, 3907–3911.
[48] R. Ballini, G. Bosica, Eur. J. Org. Chem. 1998, 355–357.
[49] I. Erden, J. R. Keeffe, F. P. Xu, J. B. Zheng, J. Am. Chem. Soc. 1993,
115(21), 9834–9835.
[50] N. C. Deno, R. W. Gaugler, T. Spencer, J. Am. Chem. Soc. 1968, 31,
1968–1969.
[1] J. Bigeleisen, M. Wolfsberg, Adv. Phys. Chem. 1958, 1, 15–76.
[2] M. Wolfsberg, M. J. Stern, Pure Appl. Chem. 1964, 8, 225–242.
[3] M. J. Stern, M. Wolfsberg, J. Chem. Phys. 1966, 45, 2618–2630.
[4] For the most recent review, F. E. Romesberg, R. Schowen, Adv. Phys.
Org. Chem. 2004, 39, 27–77.
[5] L. B. Sims, D. E. Lewis, Bond order methods for calculating isotope
effects in organic reactions, Isotopes Org. Chem. 1984, 6, 161–259.
[6] B. A. Bahnson, J. P. Klinman, Methods Enzymol. 1995, 249, 373–397.
[7] J. Basran, S. Patel, M. J. Sutcliffe, N. S. Scrutton, J. Biol. Chem. 2001,
276, 6234–6242.
[51] W. Von Theilacker, G. Wendtland, Justus Leibigs Ann. Chem. 1950, 570,
33–53.
[52] J. U. Nef, Ann. 1894, 280, 263–291.
[8] J. Basran, M. J. Sutcliffe, N. S. Scrutton, Biochemistry 1999, 38,
3218–3222.
[53] H. W. Pinnock, Org. React. 1990, 38, 655–792.
[54] E. S. Lewis, in Chemistry of the Functional Groups, Suppl F, Part 2,
Chapter 16 (Ed.: S. Patai), Wiley and Sons, 1982.
[55] W. R. Bowman, B. T. Golding, W. P. Watson, J. Chem. Soc., Perkin Trans. 2
1980, 731–736.
[9] M. E. Schneider, M. J. Stern, J. Am. Chem. Soc 1972, 94, 1517–1522.
[10] The earliest consideration of nuclear tunnelling seems to have been
by F. Hund, Z. Phys. 1927, 43, 805–826; for a fuller historical view see
Reference [11].
[11] (Ed.: R. P. Bell). The Tunnel Effect in Chemistry, Chapman and Hall,
London, 1980, Chapter 1.
[56] Using the tube volume and a solubility of oxygen in water (8.2 ppm
at 258C).
[12] M. J. Knapp, J. P. Klinman, Eur. J. Biochem. 2002, 269, 3113–31121.
[13] M. J. Sutcliffe, N. S. Scrutton, Eur. J. Biochem. 2002, 269, 3096–3102.
[14] D. Antoniou, S. Nunez, S. D. Schwarz, Adv. Phys. Org. Chem. 2006, 41,
315–362, and references therein.
[57] R. Ballini, M. Petrini, Tetrahedron 2004, 60, 1017–1047.
[58] M. D. Nikalje, A. I. Sayyed, G. K. Dewkar, A. Sudalai, Tetrahedron Lett.
2000, 41, 959–961.
[59] E. Balogh-Hergovich, G. Speier, M. Reglier, L. Gioirgi, L. Parkany, Inorg
Chem. 1998, 37, 6535–6537.
[15] G. Tresadern, S. Nunez, P. Faulder, H. Wang, I. H. Hillier, N. A. Burton,
Faraday Discuss. 2002, 122, 223–242.
[60] E. Balogh-Hergovich, Z. Greczi, J. Kaiser, G. Speier, G. Huttner, L.
Zsolnai, Eur. J. Inorg. Chem. 2002, 1687–1696.
[61] C. R. Hipkin, M. A. Salem, D. Simpson, S. J. Wainwright, Biochem. J.
1999, 340, 491–495.
[62] P. F. Fitzpatrick, A. M. Orville, M. P. Nagpal, M. P. Valley, Arch. Biochem.
Biophys. 2005, 433(1), 157–165.
[16] P. F. Faulder, G. Tresadern, K. K. Chohan, N. S. Scrutton, M. J. Sutcliffe,
I. H. Hillier, N. A. Burton, J. Am. Chem. Soc. 2001, 123, 8604–8605.
[17] A. Kohen, J. P. Klinman, Acc. Chem. Res. 1988, 31, 397–404.
[18] A. J. Kirby, Angew. Chem., Int Ed. Engl. 1996, 35, 707–724.
[19] R. P. Bell, D. W. Earls, J. B. Henshall, J. Chem. Soc., Perkin Trans. 2 1976,
39–45.
[63] H. N. Little, J. Biol. Chem. 1951, 193, 347–358.
[64] S. J. Angyal, W. K. Warburton, J. Chem. Soc. 1951, 2492–2494.
[65] H. Wilson, J. D. Caldwell, E. S. Lewis, J. Org. Chem. 1973, 38, 564–566.
[66] A. J. Kirby, Adv. in Phys. Org. Chem. 1980, 17, 183–278.
[67] A. J. Kirby, Angew Chem,. Int. Ed. Engl. 1996, 35, 707–724.
[68] A. J. Kirby, Acc. Chem. Res. 1997, 30, 290–296.
[69] R. Alvarez, R. Schowen, in Isotopes in Organic Chemistry, Vol. 7,
Chapter 1., (Eds.: E. Buncel, C. C. Lee), Elsevier PL, Amsterdam, 1989.
[70] D. J. Cram, Fundamentals of Carbanion Chemistry, Chapter 3,
Academic Press, New York, 1965.
[71] F. G. Bordwell, J. E. Bartmess, J. A. Hautala, J. Org. Chem. 1978, 43,
3107–3113.
[72] O. Rogne, J. Chem. Soc., Chem. Commun. 1977, 695.
[73] S. Y. Bary, H. Gilboa, E. A. Halevi, J. Chem. Soc., Perkin Trans. 2 1979,
938–942.
[74] A. Streitwieser, H. S. Klein, J. Am. Chem. Soc. 1963, 85, 2759–2763.
[75] M. Paabo, R. G. Bates, R. A. Robinson, J. Phys. Chem. 1966, 70,
540–543.
[76] E. L. Eliel, J. Am. Chem. Soc. 1949, 71, 3970–3972.
[77] H. Strehlow, Rapid Reactions in Solution, VCH, New York, 1992.
[78] H. Strehlow, Advances in molecular relaxation and interaction pro-
cesses. 1978, 12, 29–46.
[20] R. P. Bell, D. W. Earls, J. Chem. Soc., Perkin Trans. 2 1976, 45–46.
[21] H. Wilson, E. S. Lewis, J. Am. Chem. Soc. 1972, 94, 2283–2285.
[22] H. Wilson, J. D. Caldwell, E. S. Lewis, J. Org. Chem. 1973, 38, 564–566.
[23] H. F. Gilbert, J. Am. Chem. Soc. 1980, 102, 7059–7065.
[24] D. Turnbull, S. J. Maron, J. Am. Chem. Soc. 1943, 65, 212–218.
[25] W. J. Albery, C. F. Bernasconi, A. J. Kresge, J. Phys. Org. Chem. 1988, 1,
29–31.
[26] C. F. Bernasconi, Adv. Phys. Org. Chem. 1992, 27, 119–238 and
references therein.
[27] J. P. Guthrie, J. Am. Chem. Soc. 1997, 119, 1151–1152.
[28] V. Gold, S. J. Grist, J. Chem. Soc., B 1971, 2282–2285.
[29] E. H. Caldin, S. Mateo, J. Chem. Soc., Chem. Commun. 1973, 854–855.
[30] E. H. Caldin, S. Mateo, J. Chem. Soc., Faraday Trans. 1 1975, 71,
1876–1904.
[31] E. H. Caldin, S. Mateo, J. Chem. Soc., Faraday Trans. 1 1976, 72,
112–121.
[32] A. J. Kresge, M. F. Powell, J. Phys. Org. Chem. 1990, 3, 55–61.
[33] E. F. Caldin, S. Mateo, P. Warrick, J. Am. Chem. Soc. 1981, 103, 202–204.
[34] P. Pruszynski, A. Jarczewski, J. Chem. Soc., Perkin Trans. 2 1986,
1117–1120.
[35] W. Galezowski, A. Jarczewski, J. Chem. Soc., Perkin Trans. 2 1989,
1647–1656.
[79] M. Mautner, W. L. Seick, J. Am. Chem. Soc. 1986, 108, 7525–7259.
[80] F. G. Bordwell, Acc. Chem. Res. 1988, 21, 456–463.
[81] S. H. Gellman, B. R. Adams, Tetrahedron Lett. 1989, 30, 3381–3384.
[82] G. A. Olah, P. Ramaiah, C. Lee, G. K. S. Prakash, Synlett 1992, 337–341.
[83] A. P. Black, F. H. Babers, Org. Synth. 1943, CV 2, 512–515.
[84] E. J. Billo, Excel for Chemists, 2nd ed. Wiley-VCH, New York, 2001.
[36] E. S. Lewis, L. H. Funderburk, J. Am. Chem. Soc. 1967, 89, 2322–
2327.
[37] R. P. Bell, D. M. Goodall, Proc. Roy Soc. (London) 1966, A294, 273–
297.
[38] N. Isaacs, K. Javaid, J. Chem. Soc., Perkin Trans. 2 1979, 1583–1586.
[39] E. S. Lewis, J. K. Robinson, J. Am. Chem. Soc. 1968, 90, 4337–4342.
J. Phys. Org. Chem. 2008, 21 603–613
Copyright ß 2008 John Wiley & Sons, Ltd.