K. Alex et al. / Tetrahedron Letters 49 (2008) 4607–4609
4609
Med. Chem. Lett. 2004, 14, 2249–2252; (d) Velentza, A. V.; Wainwright, M. S.;
Zadadzki, M.; Mirzoeva, S.; Schumacher, M.; Haiech, J.; Focia, P. J.; Egli, M.;
Waterson, D. M. Bioorg. Med. Chem. Lett. 2003, 13, 3465–3470; (e) Contreras, J.
M.; Parrot, I.; Sippl, W.; Rival, Y. M.; Wermuth, C. G. J. Med. Chem. 2001, 44,
2707–2718; (f) Katritzky, A. R.; Pleynet, D. P. M.; Yang, B.; Yao, J. Synthesis 1998,
1627–1630. and references therein; Review (g) Matyus, P. J. Heterocycl. Chem.
1998, 35, 1075–1089; (h) Coates, W. J. Pyridazines and Their Benzo Derivatives.
In Comprehensive Heterocyclic Chemistry II; Katritzky, A. R., Rees, C. W., Scriven,
E. F. V., Eds.; Pergamon Press: Oxford, 1996; Vol. 6, p 191.
ble to isolate the pyridazinone derivatives 3a–h directly in moder-
ate to good yields (Table 2). For example, reaction of p-tolylhydr-
azine proceeded over both steps in 61% yield (Table 2, entry 2),
while the more sterical hindered o-tolylhydrazine gave a lower
yield of 47% (Table 2, entry 3). Compared to the p-tolyl-substituted
pyridazinone a similar yield is observed for the p-isopropyl-substi-
tuted pyridazinone derivative with 64% yield (Table 2, entry 4).
Besides alkyl-substituted arylhydrazines, we also tested phenyl-
hydrazines with electron-withdrawing substituents. These methyl-
sulfonyl-, cyano-, and 4-bromophenyl-substituted pyridazinones
are synthesized in up to 71% yield (Table 2, entries 5–7). In addi-
tion, the 3,4-dichloro-substituted phenylhydrazine in para- and
meta-position gave the corresponding pyridazinone 3h in 57% yield
(Table 2, entry 8).
2. Estevez, I.; Ravina, E.; Sotelo, E. J. Heterocycl. Chem. 1998, 35, 1421–1428. and
references therein.
3. (a) Sircar, I.; Duell, B. L.; Bobowski, G.; Bristol, J. A.; Evans, D. B. J. Med. Chem.
1985, 28, 1405–1413; (b) Bristol, J. A. J. Med. Chem. 1984, 27, 1099–1101.
4. (a) Campos, K. R.; Woo, J. C. S.; Lee, S.; Tillyer, R. D. Org. Lett. 2004, 6, 79–82; (b)
Gouault, N.; Cupif, J. F.; Picard, S.; Lecat, A.; David, M. J. Pharm. Pharmacol. 2001,
53, 981–985; (c) Ege, S. N.; Carter, M. L. C.; Ortwine, D. F.; Chou, S.-S. P.;
Richman, J. F. J. Chem. Soc., Perkin Trans. 1 1977, 1252–1257; (d) Wamhoff, H.;
Korte, F. Liebigs Ann. Chem. 1969, 724, 217–220; (e) Stevens, F. J.; Griffin, T. D.;
Fields, T. L. J. Am. Chem. Soc. 1955, 77, 42–44.
In conclusion, we have developed a novel method for the syn-
thesis of aryl-substituted 4,5-dihydro-3(2H)-pyridazinones based
on domino hydrohydrazination and condensation reactions. Eight
substituted arylhydrazines react with 4-pentynoic acid in the pres-
ence of ZnCl2 to give the corresponding pyridazinone derivatives in
a one-pot process in moderate to good yields. Notably, this conve-
nient and practical procedure does not require any special han-
dling, unusual reagents, and proceeds without the exclusion of
air or water.
5. Fischer, E. Liebigs Ann. Chem. 1886, 236, 126–151.
6. Recent selected examples: (a) Murphy, D. E.; Dragovich, P. S.; Ayida, B. K.;
Bertolini, T. M.; Li, L.-S.; Ruebsam, F.; Stankovic, N. S.; Sun, Z.; Zhao, J.; Zhou, Y.
Tetrahedron Lett. 2008, 49, 811–815; (b) Mohamed, N. R.; El-Saidi, M. M. T.; Ali,
Y. M.; Elnagdi, M. H. J. Heterocycl. Chem. 2007, 44, 1333–1337; (c) de Araujo-
Junior, J. X.; Schmitt, M.; Antheaume, C.; Bourguignon, J.-J. Tetrahedron Lett.
2007, 48, 7817–7820; (d) Helm, M. D.; Plant, A.; Harrity, J. P. A. Org. Biomol.
Chem. 2006, 4, 4278–4280.
7. (a) Alex, K.; Tillack, A.; Schwarz, N.; Beller, M. ChemSusChem 2008, 1, 333–
338; (b) Tillack, A.; Khedkar, V.; Jiao, H.; Beller, M. Eur. J. Org. Chem. 2005,
5001–5012; (c) Tillack, A.; Khedkar, V.; Beller, M. Tetrahedron Lett. 2004,
45, 8875–8878; (d) Khedkar, V.; Tillack, A.; Beller, M. Org. Lett. 2003, 5,
4767–4770; (e) Tillack, A.; Garcia Castro, I.; Hartung, C. G.; Beller, M.
Acknowledgments
Angew. Chem. 2002, 114, 2646–2648;
. Angew. Chem., Int. Ed. 2002, 41,
2541–2543.
8. Selected recent reviews on hydroaminations of alkynes: (a) Severin, R.; Doye, S.
Chem. Soc. Rev. 2007, 36, 1407–1420; (b) Lee, A. V.; Schafer, L. L. Eur. J. Inorg.
Chem. 2007, 2243–2255; (c) Alonso, F.; Beletskaya, I. P.; Yus, M. Chem. Rev.
2004, 104, 3079–3159.
This work has been funded by the State of Mecklenburg-Wes-
tern Pomerania, the BMBF (Bundesministerium für Bildung und
Forschung), the Deutsche Forschungsgemeinschaft (Graduierten-
kolleg 1213, and Leibniz-price), and the Fonds der Chemischen
Industrie (FCI). We thank Dr. W. Baumann, Dr. C. Fischer, S. Buch-
holz, S. Schareina, and K. Mevius for their excellent technical and
analytical support.
9. (a) Alex, K.; Schwarz, N.; Khedkar, V.; Sayyed, I. A.; Tillack, A.; Michalik, D.;
Holenz, J.; Diaz, J. L.; Beller, M. Org. Biomol. Chem. 2008, 6, 1802–1807; (b)
Sayyed, I. A.; Alex, K.; Tillack, A.; Schwarz, N.; Spannenberg, A.; Michalik, D.;
Beller, M. Tetrahedron 2008, 64, 4590–4595; (c) Schwarz, N.; Alex, K.; Sayyed, I.
A.; Khedkar, V.; Tillack, A.; Beller, M. Synlett 2007, 1091–1095; (d) Sayyed, I. A.;
Alex, K.; Tillack, A.; Schwarz, N.; Michalik, D.; Beller, M. Eur. J. Org. Chem. 2007,
4525–4528; (e) Khedkar, V.; Tillack, A.; Michalik, D.; Beller, M. Tetrahedron
2005, 61, 7622–7631; (f) Tillack, A.; Jiao, H.; Garcia Castro, I.; Hartung, C. G.;
Beller, M. Chem. Eur. J. 2004, 10, 2409–2420; (g) Khedkar, V.; Tillack, A.;
Michalik, M.; Beller, M. Tetrahedron Lett. 2004, 45, 3123–3126.
Supplementary data
Supplementary data associated with this article can be found, in
10. (a) Banerjee, S.; Barnea, E.; Odom, A. L. Organometallics 2008, 27, 1005–1014;
(b) Ackermann, L.; Born, R. Tetrahedron Lett. 2004, 45, 9541–9544; (c) Cao, C.;
Shi, Y.; Odom, A. L. Org. Lett. 2002, 4, 2853–2856; (d) Walsh, P. T.; Carney, M. J.;
Bergman, R. G. J. Am. Chem. Soc. 1991, 113, 6343–6345.
11. Alex, K.; Tillack, A.; Schwarz, N.; Beller, M. Org. Lett., in press.
12. (a) Alex, K.; Tillack, A.; Schwarz, N.; Beller, M. Angew. Chem. 2008, 120, 2337–
2340; Angew. Chem., Int. Ed. 2008, 47, 2304–2307.
13. For a recent review on Markovnikov and anti-Markovnikov functionalization of
olefins and alkynes, see: (a) Seayad, J.; Tillack, A.; Jiao, H.; Beller, M. Angew.
Chem. 2004, 116, 3448–3479; Angew. Chem., Int. Ed. 2004, 43, 3368–3398.
14. For recent review in Friedel–Crafts acylation reaction, see: Sartori, G.; Maggi, R.
Chem. Rev. 2006, 106, 1077–1104.
References and notes
1. (a) Mitchinson, A.; Blackaby, W. P.; Bourrain, S.; Carling, R. W.; Lewis, R. T.
Tetrahedron Lett. 2006, 47, 2257–2260; Review (b) Lee, S.-G.; Kim, J.-J.; Kim,
H.-K.; Kweon, D.-H.; Kang, Y.-J.; Cho, S.-D.; Kim, S.-K.; Yoon, Y.-J. Curr. Org.
Chem. 2004, 8, 1463–1480; (c) Byth, K. F.; Cooper, N.; Culshaw, J. D.; Heaton, D.
W.; Oajes, S. F.; Minshull, C. A.; Norman, R. A.; Pauptit, R. A.; Tucker, J. A.; Breed,
J.; Pannifer, A.; Roswell, S.; Slanway, J. J.; Valentine, A. L.; Thomas, A. P. Bioorg.