A. Kamal et al. / Bioorg. Med. Chem. Lett. 18 (2008) 3769–3773
3773
say,17 in the presence of the enzyme b-glucuronidase using HT 29
colon cancer (adenocarcinoma) cell lines. They were found to pos-
sess highly reduced cytotoxicity compared to the parent imines
(Table 1). The prodrug 15a was found to kill 50% of cells (IC50) at
a concentration of 2690 lmol, while its parent drug (16a) showed
an IC50 of 8.12 lmol. The prodrug when incubated with the HT 29
cells in the presence of the enzyme b-glucuronidase exhibited an
IC50 of 12.88 lmol, which is similar to that of the drug. The IC50 val-
ues of the prodrugs and their corresponding parent moieties
shown in Table 1 clearly indicate that the toxicity of the prodrug
in the presence of the enzyme is similar to that of the parent drug.
2. (a) Bagshawe, K. D. Br. J. Cancer 1987, 56, 531; (b) Bagshawe, K. D. Drug Dev. Res.
1995, 34, 220; (c) Denny, W. A. Cancer Invest. 2004, 22, 604.
3. (a) Springer, C. J.; Niculescu-Duvaz, I. Adv. Drug Deliv. Rev. 1996, 22, 351; (b)
Niculescu-Duvaz, I.; Springer, C. J. Mol. Biotechnol. 2005, 30, 71.
4. (a) Bosslet, K.; Czech, J.; Hoffman, D. Tumor Target 1995, 1, 45; (b) Sinhababu, A.
K.; Thakker, D. R. Adv. Drug Deliv. Rev. 1996, 19, 241; (c) Bosslet, K.; Straub, R.;
Blumrich, M.; Czech, J.; Gerken, M.; Sperker, B.; Kroemer, H. K.; Gesson, J.-P.;
Koch, M. C. Cancer Res. 1998, 58, 1195.
5. (a) Bosslet, K.; Czech, J.; Hoffman, D. Tumor Target. 1995, 1, 45; (b) Bosslet, K.;
Straub, R.; Blumrich, M.; Czech, J.; Gerken, M.; Sperker, B.; Kroemer, H. K.;
Gesson, J.-P.; Koch, M.; Monneret, C. Cancer Res. 1998, 58, 1195.
6. Murdter, T.; Sperker, B.; Kivisto, K.; McClellan, M.; Fritz, P.; Friedel, G.; Linder,
A.; Bosslet, K.; Toomes, H.; Diekesmann, R.; Kroemer, H. Cancer Res. 1997, 57,
2440.
7. Angenault, S.; Thirot, S.; Schmidt, F.; Monneret, C.; Pfeiffer, B.; Renard, P. Bioorg.
Med. Chem. Lett. 2003, 13, 947.
The prodrug 15b also exhibited
a reduction in toxicity
(IC50 = 5280 lmol) when compared to the parent imine (16b),
which showed an IC50 of 30.19 lmol. In the presence of the enzyme
15b exhibited an IC50 value (41.68 lmol) similar to that of the par-
ent moiety.
Both the prodrugs were found to possess highly reduced toxic-
ity and were also good substrates for the enzyme b-glucuronidase.
The activity of the prodrugs upon activation by the enzyme ap-
proached that of the imines; indicating the complete activation
ability of the prodrugs.
The cells after incubating for 2 h with the drug 16b showed
shrinkage (Fig. 5b), on the other hand its prodrug 15b at the same
concentration did not show any shrinkage (Fig. 5c) and the mor-
phology was similar to that of the control cells (Fig. 5a). The pro-
drug 15b in the presence of the enzyme b-glucuronidase
exhibited cell morphology (shrinkage) similar to that of the cells
treated with the drug 16b (Fig. 5d).
In conclusion, the enzymatic activation and selective cytotoxic-
ity studies of the prodrugs reveal that these molecules possess
good activation ability and are potential candidates for use in
selective therapy of solid tumors. Compounds 15a and 15b possess
a potential for use in PMT of solid tumors that over express the en-
zyme b-glucuronidase.18 The prodrugs can also be used for anti-
body-directed enzyme prodrug therapy (ADEPT)19 of cancer. The
other important consequence of these glucuronide prodrugs was
highly improved water solubility provided to the drug by the glu-
curonide functionality.20
8. Albin, N.; Massaad, L.; Toussaint, C.; Mathieu, M.-C.; Morizet, J.; Parise, O.;
Gouyette, A.; Chabot, G. G. Cancer Res. 1993, 53, 3541.
9. Kamal, A.; Rao, M. V.; Laxman, N.; Ramesh, G.; Reddy, G. S. K. Curr. Med. Chem.,
Anticancer Agents 2002, 2, 215.
10. (a) Masterson, L. A.; Spanswick, V. J.; Hartley, J. A.; Begent, R. H.; Howard, P. W.;
Thurston, D. E. Bioorg. Med. Chem. Lett. 2006, 16, 252; (b) Bagshawe, K. D. Expert
Rev. Anticancer Ther. 2006, 6, 1421.
11. Walton, M. I.; Goddard, P.; Kelland, L. R.; Thurston, D. E.; Harrap, K. R. Cancer
Chemother. Pharmacol. 1996, 38, 431.
12. Kamal, A.; Ramesh, G.; Laxman, N.; Ramulu, P.; Srinivas, O.; Neelima, K.;
Kondapi, A. K.; Sreenu, V. B.; Nagarajaram, H. A. J. Med. Chem. 2002, 45, 4679.
13. (a) Langley, D. R.; Thurston, D. E. J. Org. Chem. 1987, 52, 91; (b) Courtney, S. M.;
Thurston, D. E. Tetrahedron Lett. 1993, 34, 5327; (c) Bose, D. S.; Jones, G. B.;
Thurston, D. E. Tetrahedron 1992, 48, 751.
14. Bollenback, G. N.; Long, J. W.; Benjamin, D. G.; Lindquist, J. A. J. Am. Chem. Soc.
1955, 77, 3312.
25
15. 15a. mp 163–164 °C; ½aꢁD þ 83:33 (c = 0.3, CH3OH); 1H NMR (CD3OD,
500 MHz): d 1.32 (t, 2H, J = 7.18 Hz), 1.76–1.91 (m, 4H), 1.96–2.20 (m, 8H),
3.39–3.78 (m, 10H), 3.85 (s, 3H), 3.87 (s, 3H), 3.96–4.17 (m, 4H), 4.80–5.01 (br
s, 1H), 5.02–5.11 (m, 1H), 5.26 (d, 1H, J = 12.20 Hz), 5.68 (d, 1H, J = 10.05 Hz),
6.71 (s, 1H), 6.76 (s, 1H), 7.19 (s, 1H), 7.36 (s, 1H), 7.48 (s, 2H), 7.65 (s, 1H), 8.56
(s, 1H, NH); ESI-MS: m/z 964 [MꢀH]ꢀ; HRMS: [MꢀH]ꢀ calcd for C45H50N5O19
m/z 964.3100, found (ESI) m/z 964.3083; IR (KBr) (mmax cmꢀ1): 3422, 2925,
2855, 1693, 1609, 1526, 1382, 1435, 1061, 1016; Anal. Calcd for: C45H51N5O19
:
C, 55.96; H, 5.32; N, 7.25%. Found: C, 55.75; H, 5.50; N, 7.03%; 15b: mp 151–
25
152 °C; ½aꢁD þ 6:66 (c = 0.3, CH3OH); 1H NMR (CD3OD, 500 MHz): d 1.97–2.19
(m, 4H), 3.38–3.69 (m, 6H), 3.76–3.80 (m, 1H, J = 9.33 Hz), 3.89 (s, 3H), 4.96–
5.16 (m, 5H), 5.66 (d, 1H, J = 10.05 Hz), 6.88 (s, 1H), 7.22 (s, 1H), 7.24–7.30 (m,
1H), 7.31–7.36 (m, 2H), 7.37–7.45 (m, 4H), 7.51–7.70 (br s, 1H); ESI-MS: m/z
724 [MꢀH]ꢀ; HRMS: [MꢀH]ꢀ calcd for C34H34N3O15 m/z 724.1989, found (ESI)
m/z 724.2014; IR (KBr) (mmax cmꢀ1): 3424, 2924, 2854, 1673, 1613, 1532,
1460, 1322, 1126, 1021; Anal. Calcd for C34H35N3O15: C, 56.28; H, 4.86; N,
5.79%. Found: C, 56.36; H, 4.62; N, 5.98%.
16. The enzymatic reaction mixtures were analyzed using Phenomenex C18
reverse phase column at 254 nm and 30:70 Acetonitrile–H2O as eluent system
at 1 ml/min flow. The compound 15b with a retention time of 3.01 min, 4-
(hydroxymethyl)-2-nitrophenol spacer 6.35 min and 16b 22.87 min. 15a
retention time was 3.13 min and 16a was 22.40 min.
Acknowledgments
Authors V.T. and V.G.M.N. are thankful to CSIR, New Delhi and
P.R. is thankful to UGC for awarding research fellowships.
17. (a) Edmondson, J. M.; Armstrong, L. S.; Martinez, A. O. J. Tissue Cult. Meth. 1988,
18. Connors, T. A.; Whisson, M. E. Nature 1966, 210, 866.
19. Bosslet, K.; Straub, R.; Blumrich, M.; Czech, J.; Gerken, M.; Sperker, B.; Kroemer,
H. K.; Gesson, J.-P.; Koch, M.; Monneret, C. Cancer Res. 1998, 58, 1195.
20. (a) Gesson, J. P.; Jacquesy, J.-C.; Mondon, M.; Petit, P.; Renoux, B.;
Andrianomenjanahary, S.; Dufat-Trinh Van, H.; Koch, M.; Michel, S.;
Tillequin, F.; Florent, J.-C.; Monneret, C.; Bosslet, K.; Czech, J.; Hoffmann, D.
Anti-Cancer Drug. Res. 1994, 9, 409; (b) Goldstein, J. A.; Faletto, M. B. Environ.
Health Perspect. 1993, 100, 169.
References and notes
1. (a) Ferguson, M. Drug Resist. Updat. 2001, 4, 225; (b) Murray, J. C.; Carmichael, J.
Adv. Drug Deliv. Rev. 1995, 17, 117–127; (c) Sherwood, R. F. Adv. Drug Deliv. Rev.
1996, 22, 269.