Organometallics 2002, 21, 4027-4029
4027
Tr a n s Ad d ition s of Sila n es to 1-Alk yn es Ca ta lyzed by
Ru th en iu m Com p lexes: Role of in Situ F or m ed
P olyn u clea r Aggr ega tes
Marta Mart´ın, Eduardo Sola, Fernando J . Lahoz, and Luis A. Oro*
Departamento de Quı´mica Inorga´nica, Instituto de Ciencia de Materiales de Arago´n,
Universidad de Zaragoza-CSIC, E-50009 Zaragoza, Spain
Received J uly 2, 2002
Ta ble 1. Ad d ition of HSiEt3 to P h CtCH Ca ta lyzed
Summary: (Z)-Alkenyl ligands are formed by insertion
of 1-alkynes into bridging hydrides. The unusual ste-
reoselectivity of this elementary step may account for the
selectivity toward (Z)-alkenylsilanes frequently observed
in 1-alkyne hydrosilylations catalyzed by basic late-
transition-metal complexes.
by [Ru H(XY)(CO)(P R3)2] P r ecu r sor sa
silylated products (%)
PhCdCHSiEt3
time to
100%
PhCt
XY
PR3 T (K) yield (h)
Z
E
CSiEt3
Homogeneous reactions catalyzed by transition-metal
complexes often involve unsaturated metal species with
potentially bridging ligands such as hydrides. These are
propitious features for the formation of polynuclear
compounds,1 which should be regarded as likely com-
ponents of catalytic reactions. When observable, such
polynuclear aggregates usually play just a marginal role
during catalysis, as stable resting states for the cata-
lyst.2 However, the feasibility of some other catalytic
processes seems to rely entirely on the performance of
polynuclear species or transition states.3,4 The catalysis
through these polynuclear compounds can involve sev-
eral types of intermetallic cooperation mechanisms,
which may favor faster reaction rates, and selectivities
different from those obtained through possible mono-
nuclear catalytic cycles.3,5
1
2
3
4
5
Cl
PiPr3 298
PiPr3 298
PiPr3 298
1
1.5
164
100
97
95
31
35
0
2
3
10
38
0
1
1
59
27
acetate
acac
acetate
PPh3
353
353
20
20
Cl, PPh3 PPh3
a
Conditions: solvent, 1,2-dichloroethane; HSiEt3/PhCtCH/
catalyst 100/100/1; [Ru]0 ) 2.23 × 10-3 M.
latter reactions have also provided numerous examples
of another peculiar feature, namely the unusual trans
addition of silanes to 1-alkyne triple bonds to give (Z)-
alkenylsilanes.10 In this communication, which focuses
on ruthenium-catalyzed hydrosilylations of phenylacet-
ylene, we present evidence suggesting that the proclivity
of silanes to yield polynuclear compounds and the
frequent achievement of unusual stereoselectivities in
1-alkyne hydrosilylations are not independent facts.
Actually, they seem to be cause and effect.
The hydrosilylation of alkynes catalyzed by Ru(II)-
phosphine compounds has been thoroughly investi-
gated.11 The selectivity of these reactions has been found
to be dependent on, inter alia, the nature of the catalyst
precursor, as illustrated in Table 1 for some related five-
and six-coordinate Ru(II) complexes in the addition of
HSiEt3 to PhCtCH. It is worth noting that all com-
pounds containing the basic PiPr3 phosphine selectively
produce the (Z)-alkenylsilane, even though their reac-
tion rates are very different, depending on the nature
of the other ancillary ligands. On the other hand, the
catalysts containing PPh3 are less selective, producing
(Z)- and (E)-alkenylsilanes together with products of
dehydrogenative silylation: PhCtCSiEt3 and styrene.
A detailed inspection of the course of these latter
nonselective processes has revealed strong variations
With regard to the abundance of reported examples,
the formation of polynuclear aggregates seems to be
specially favored in reactions involving organosilanes.6,7
Actually, dinuclear species have been recognized to be
the true catalysts in reactions such as dehydrogenative
dimerizations of silanes and hydrosilylations.8,9 These
(1) Venanzi, L. M. Coord. Chem. Rev. 1982, 43, 251-274.
(2) For examples, see: Chaloner, P. A.; Esteruelas, M. A.; J oo´, F.;
Oro, L. A. Homogeneous Hydrogenation; Kluwer: Dordrecht, The
Netherlands, 1993.
(3) Catalysis by Di- and Polynuclear Metal Clusters Complexes;
Adams, R. A., Cotton, F. A., Eds.; Wiley-VCH: New York, 1998.
(4) See for example: (a) Muetterties, E. L. J . Organomet. Chem.
1980, 200, 177-190. (b) Esteruelas, M. A.; Oro, L. A.; Valero, C.
Organometallics 1992, 11, 3362-3369. (c) Broussard, M. E.; J uma, B.;
Train, S. G.; Peng, W. J .; Laneman, S. A.; Stanley, G. G. Science 1993,
260, 1784-1788. (d) Grumbine, S. K.; Tilley, T. D. J . Am. Chem. Soc.
1994, 116, 6951-6952. (e) Torres, F.; Sola, E.; Elduque, A.; Mart´ınez,
A. P.; Lahoz, F. J .; Oro, L. A. Chem. Eur. J . 2000, 6, 2120-2128.
(5) (a) Fryzuk, M. D.; Piers, W. E. Organometallics 1990, 9, 986-
998. (b) Bosnich, B. Inorg. Chem. 1999, 38, 2554-2562. (c) Sola, E.;
Torres, F.; J ime´nez, M. V.; Lo´pez, J . A.; Ruiz, S. E.; Lahoz, F. J .;
Elduque, A.; Oro, L. A. J . Am. Chem. Soc. 2001, 123, 11925-11932.
(6) (a) Braunstein, P.; Knorr, M.; Stern, C. Coord. Chem. Rev. 1998,
178-180, 903-965. (b) Ogino, H.; Tobita, H. Adv. Organomet. Chem.
1998, 42, 223-290. (c) Braunstein, P.; Boag, N. M. Angew. Chem., Int.
Ed. 2001, 40, 2427-2433.
(10) (a) Ojima, I.; Li, Z.; Zhu, J . In The Chemistry of Organic Silicon
Compounds; Rappoport, Z., Apeloig, Y., Eds.; Wiley: New York, 1998;
Vol. 2, pp 1687-1792. (b) Tanke, R. S.; Crabtree, R. H. J . Am. Chem.
Soc. 1990, 112, 7984-7989.
(11) (a) Maruyama, Y.; Yamamura, K.; Sagawa, T.; Katayama, H.;
Ozawa, F. Organometallics 2000, 19, 1308-1318. (b) Maruyama, Y.;
Yamamura, K.; Nakayama, I.; Yoshiuchi, K.; Ozawa, F. J . Am. Chem.
Soc. 1998, 120, 1421-1429. (c) Maddock, S. M.; Rickard, C. E. F.;
Roper, W. R.; Wright, L. J . Organometallics 1996, 15, 1793-1803. (d)
Christ, M. L.; Sabo-Etienne, S.; Chaudret, B. Organometallics 1995,
14, 1082-1084. (e) Esteruelas, M. A.; Herrero, J .; Oro, L. A. Organo-
metallics 1993, 12, 2377-2379.
(7) Osakada, K. J . Organomet. Chem. 2000, 611, 323-331.
(8) (a) Rosenberg, J .; Fryzuk, M. D.; Rettig, S. J . Organometallics
1999, 18, 958-969. (b) Fryzuk, M. D.; Rosenberg, L.; Rettig, S. J .
Organometallics 1996, 15, 2871-2880.
(9) Voskoboynikov, A. Z.; Shestakova, A. K.; Beletskaya, I. P.
Organometallics 2001, 20, 2794-2801.
10.1021/om0205243 CCC: $22.00 © 2002 American Chemical Society
Publication on Web 08/31/2002