Yamanoi and Nishihara
SCHEME 1. Direct Arylation of Tertiary Silanes
several examples of synthesis with transition metal catalysts have
been reported. The silylation of aromatic C-H bonds is the
most straightforward and atom-economical route to arylsilane
derivatives.6 However, only limited protocols have been reported
in the literature. The reaction usually requires a long reaction
time and high temperatures (often above 150 °C), has a low
yield, and is limited by the small range of potential starting
materials.
Generally, hydrosilanes have been widely used as mild
reducing reagents for fine organic syntheses.7 Since the pioneer-
ing work of Murata et al., Manoso and DeShong, Denmark and
Kallemyn, Komuro et al., and Ito, transition metal-catalyzed
cross-coupling reactions of aryl halides with trialkoxysilane have
emerged as an alternative and promising method for Si-C bond
formation.8 This method has received much attention because
it can produce important synthetic building blocks that are
difficult to prepare with other technologies. However, in most
cases trialkylsilanes were not suitable silylating reagents because
of their strong reducing power toward aryl halides in the
presence of catalyst.9 For example, Chatgilialoglu et al. reported
that the addition of a catalytic amount of palladium dichloride
to a mixture of 4-iodoanisole and triethylsilane in ether at room
temperature exclusively produced the corresponding reduction
product, anisole (Scheme 1, route A).10 In the course of our
study of the synthetic use of trialkylsilanes, we recently reported
the palladium- and rhodium-catalyzed cross coupling of tri-
alkylsilanes with aryl iodides under mild conditions with good
to high yields.11,12 In the present work, the scope and limitations
of this silylation are evaluated by testing a wide variety of aryl
halides and tertiary silanes reacted with a rhodium catalyst
(Scheme 1, route B). The application of silylation to the total
synthesis of a TAC-101 analogue,13 a synthetic retinobenzoic
acid with selective binding affinity for retinoic acid receptor
(RAR)-R,14 is also demonstrated.
Results and Discussion
Rhodium-Catalyzed Arylation of Tertiary Silane. To
demonstrate the feasibility of rhodium-catalyzed arylation of a
tertiary silane, we examined the triethylsilylation of 2-iodoani-
sole (1a) using a series of catalysts, bases, and solvents, as
summarized in Table 1. As we reported previously, the
palladium-catalyzed reaction of a sterically hindered ortho-
substituted aryl iodide gave a trace amount of silylated product
2 and a much larger quantity of 3. In short, [Rh(cod)2]BF4 and
RhCl(CO)(PPh3)2 appear to be the best catalysts for producing
the silylated product 2, with almost complete conversion at room
temperature in amide solvent (entries 7 and 8).15 The yield of
silylated product 2 was slightly reduced at 50 °C, although the
reaction time became shorter with lower catalyst loading (entries
9 and 10). In addition to K3PO4,16 several other bases (K2CO3,
KOAc, and Et3N) were tested in the protocol, but none of these
yielded better results than K3PO4 (entries 12-14).
Next, we focused our attention on a range of possible leaving
groups on the aromatic ring. As outlined in Table 2, iodide,
bromide, chloride, and triflate17 were tested as leaving groups.
The iodide substrates exhibited much higher reactivity than their
bromide, triflate, or chloride analogues. When we examined the
reaction of 2-bromoanisole with triethylsilane in the presence
of an additional equal amount of tetraethylammonium iodide,
the yield of silylated product was slightly increased. These
results clearly indicate that the iodide anion plays a key role in
suppressing the undesired reduction reaction. For further
comparison, we note that our attempt to use hexamethyldisilane
(Me3SiSiMe3) or iodotrimethylsilane (I-SiMe3) instead of hy-
(6) For representative reports, see: (a) Ezbiansky, K.; Djurovich, P. I.;
LaForest, M.; Sinning, D. J.; Zayes, R.; Berry, D. Organometallics 1998, 17,
1455. (b) Sakakura, T.; Tokunaga, Y.; Sodeyama, T.; Tanaka, M. Chem. Lett.
1987, 2375. (c) Murata, M.; Fukuyama, N.; Wada, J.-I.; Watanabe, S.; Masuda,
Y. Chem. Lett. 2007, 910. (d) Tsukada, N.; Hartwig, J. F. J. Am. Chem. Soc.
2005, 127, 5022. (e) Kakiuchi, F.; Matsumoto, M.; Tsuchiya, K.; Igi, K.;
Hayamizu, T.; Chatani, N.; Murai, S. J. Organomet. Chem. 2003, 686, 134. (f)
Kakiuchi, F.; Tsuchiya, K.; Matsumoto, M.; Mizushima, E.; Chatani, N. J. Am.
Chem. Soc. 2004, 126, 12792. (g) Uchimaru, Y.; El Sayed, A. M. M.; Tanaka,
M. Organometallics 1993, 12, 2065. (h) Gustavson, W. A.; Epstein, P. S.; Curtis,
M. D. Organometallics 1982, 1, 884. (i) Kakiuchi, F.; Igi, K.; Matsumoto, M.;
Chatani, N.; Murai, S. Chem. Lett. 2001, 422. (j) Kakiuchi, F.; Igi, K.; Matsumoto,
M.; Hayamizu, T.; Chatani, N.; Murai, S. Chem. Lett. 2002, 396. (k) Ishikawa,
M.; Okazaki, S.; Naka, A.; Sakamoto, H. Organometallics 1992, 11, 4135.
(7) (a) Pietruszka, J. In Science of Synthesis; Bellus, D., Ley, S. V., Noyori,
R., Regitz, M., Reider, P. J., Schaumann, E., Shinkai, I., Thomas, E. J., Trost,
B. M., Eds.; Thieme: Stuttgart, Germany, 2002; Vol. 4, p 159. (b) Brook, M. A.
Silicon in Organic, Organometallic Polymer Chemistry; Wiley: New York, 2000;
p 171.
(8) (a) Murata, M.; Yamasaki, H.; Ueta, T.; Nagata, M.; Ishikura, M.;
Watanabe, S.; Masuda, Y. Tetrahedron 2007, 63, 4087. (b) Murata, M.; Ishikura,
M.; Nagata, M.; Watanabe, S.; Masuda, Y. Org. Lett. 2002, 4, 1843. (c) Murata,
M.; Ota, K.; Yamasaki, H.; Watanabe, S.; Masuda, Y. Synlett 2007, 1387. (d)
Murata, M.; Suzuki, K.; Watanabe, S.; Masuda, Y. J. Org. Chem. 1997, 62,
8569. (e) Murata, M.; Ohara, H.; Oiwa, R.; Watanabe, S.; Masuda, Y. Synthesis
2006, 1771. (f) Murata, M.; Yamasaki, H.; Uogishi, K.; Watanabe, S.; Masuda,
Y. Synthesis 2007, 2944. (g) Manoso, A. S.; DeShong, P. J. Org. Chem. 2001,
66, 7449. (h) Seganish, W. M.; DeShong, P. J. Org. Chem. 2004, 69, 1137. (i)
Denmark, S. E.; Kallemeyn, J. M. Org. Lett. 2003, 5, 3483. (j) Komuro, K.;
Ishizaki, K.; Suzuki, H. Touagousei-kenkyu-nenpo 2003, 6, 24. (k) Ishizaki, K.;
Komuro, K.; Suzuki, H. Jpn. Kokai Tokkyo Koho JP2004097975, 2004. (l) Ito,
M. Jpn. Kokai Tokkyo Koho JP2004284963, 2004.
(9) For representative reducing systems based on the combination of silanes/
transition metal complexes, see: (a) Villemin, D.; Nechab, B. J. Chem. Res. (S)
2000, 432. (b) Barr, K. J.; Berk, S. C.; Buchwald, S. L. J. Org. Chem. 1994, 59,
4323. (c) Breeden, S. W.; Lawrence, N. J. Synlett 1994, 833. (d) Keinan, E.
Pure Appl. Chem. 1989, 61, 1737, and references cited therein.
(10) Boukherroub, R.; Chatgilialoglu, C.; Manuel, G. Organometallics 1996,
15, 1508.
(11) (a) Yamanoi, Y. J. Org. Chem. 2005, 70, 9607. (b) Yamanoi, Y.;
Nishihara, H. Tetrahedron Lett. 2006, 47, 7157. (c) Yamanoi, Y.; Taira, T.;
Sato, J.-I.; Nakamula, I.; Nishihara, H. Org. Lett. 2007, 9, 4543.
(12) For the reports of other groups, see: (a) Hamze, A.; Provot, O.; Alami,
M.; Brion, J.-D. Org. Lett. 2006, 8, 931. (b) Gu, W.; Liu, S.; Silverman, R. B.
Org. Lett. 2002, 4, 4171. (c) Liu, S.; Gu, W.; Lo, D.; Ding, X.; Ujiki, M.; Adrian,
T. E.; Soff, G. A.; Silverman, R. B. J. Med. Chem. 2005, 48, 3630. (d) Iizuka,
M.; Kondo, Y. Eur. J. Org. Chem. 2008, 1161. (e) Karshtedt, D.; Bell, A. T.;
Tilley, T. D. Organometallics 2006, 25, 4471.
(13) (a) Yamakawa, T.; Kagechika, H.; Kawachi, E.; Hashimoto, Y.; Shudo,
K. J. Med. Chem. 1990, 33, 1430. (b) Rizvi, N. A.; Marshall, J. L.; Ness, E.;
Hawkins, M. J.; Kessler, C.; Jacobs, H.; Brenckman, W. D., Jr.; Lee, J. S.; Petros,
W.; Hong, W. K.; Kurie, J. M. J. Clin. Oncol. 2002, 20, 3522.
(14) Kagechika, H.; Shudo, K. J. Med. Chem. 2005, 48, 5875.
(15) RhCl(CO)(PPh3)2 and [Rh(cod)2]BF4 are commercially available from
Strem Chemicals.
(16) K3PO4 was dried at 100 °C for 2 h under vacuum before use.
(17) 2-Methoxyphenyl trifluoromethanesulfonate was prepared by Ritter’s
method. See: Ritter, K. Synthesis 1993, 735.
6672 J. Org. Chem. Vol. 73, No. 17, 2008