Letter
Journal of Medicinal Chemistry, 2009, Vol. 52, No. 14 4101
References
(1) World Health Organization (WHO). Hepatitis C. Fact Sheet No.
factsheets/fs164/en/ (2000).
(2) (a) Manns, M. P.; Foster, G. R.; Rockstroh, J . K.; Zeuzem, S.;
Zoulim, F.; Houghton, M. The way forward in HCV treatment;
finding the right path. Nat. Rev. Drug Discovery 2007, 6, 991–1000.
(b) De Clercq, E. The design of drugs for HIV and HCV. Nat. Rev.
Drug Discovery 2007, 6, 1001–1018.
(3) (a) Nyanguile, O.; Pauwels, F.; Van den Broeck, W.; Boutton, C.
W.; Quirynen, L.; Ivens, T.; van der Helm, L.; Vandercruyssen, G.;
Mostmans, W.; Delouvroy, F.; Dehertogh, P.; Cummings, M. D.;
Bonfanti, J.-F.; Simmen, K. A.; Raboisson, P. 1,5-Benzodiaze-
pines, a novel class of hepatitis C virus polymerase nonnucleoside
inhibitors. Antimicrob. Agents Chemother. 2008, 52, 4420–4431. (b)
McGowan, D.; Nyanguile, O.; Cummings, M. D.; Vendeville, S.;
Vandyck, K.; Van den Broeck, W.; Boutton, C. W.; Quirynen, L.;
Amssoms, K.; Bonfanti, J.-F.; Last, S.; Rombauts, K.; Lin, T.-I.;
Tahri, A.; Hu, L.; Delouvroy, F.; Surleraux, D.; Lory, P.; Kinder-
man, N.; Pille, G.; Simmen, K.; Raboisson, P. 1,5-Benzodiazepine
inhibitors of HCV NS5B polymerase. Bioorg. Med. Chem. Lett.
2009, 19, 2492–2496.
Figure 4. Overlay of the small molecule crystal structure (pink) and
the NS5B-bound structure (color by atom) of (S)-4c.
(4) Gopalsamy, A.; Chopra, R.; Lim, K.; Ciszewski, G.; Shi, M.;
Curran, K. J.; Sukits, S. F.; Svenson, K.; Bard, J.; Ellingboe, J.
W.; Agarwal, A.; Krishnamurthy, G.; Howe, A. Y. M.; Orlowski,
M.; Feld, B.; O’Connell, J.; Mansour, T. S Discovery of proline
sulfonamides as potent and selective hepatitis C virus NS5b poly-
merase inhibitors. Evidence for a new NS5b polymerase binding
site. J. Med. Chem. 2006, 49, 3052–3055.
(5) (a) Liu-Young, G.; Kozal, M. J. Hepatitis C protease and poly-
merase inhibitors in development. AIDS Patient Care STDs 2008,
22 (6), 449–457. (b) Beaulieu, P. L. Non-nucleoside inhibitors of the
HCV NS5B polymerase: progress in the discovery and develop-
ment of novel agents for the treatment of HCV infections. Curr.
Opin. Invest. Drugs 2007, 8 (8), 614–634.
(6) Kwong, A. D.; McNair, L.; Jacobson, I.; George, S. Recent
progress in the development of selected hepatitis C virus NS3.4A
protease and NS5B polymerase inhibitors. Curr. Opin. Pharmacol.
2008, 8, 1–10.
(7) Dhanak, D.; Duffy, K. J.; Johnston, V. K.; Lin-Goerke, J.;
Darcy, M.; Shaw, A. N.; Gu, B.; Silverman, C.; Gates, A. T.;
Nonnemacher, M. R.; Earnshaw, D. L.; Casper, D. J.; Kaura, A.;
Baker, A.; Greenwood, C.; Gutshall, L. L.; Maley, D.; DelVecchio,
A.; Macarron, R.; Hofmann, G. A.; Alnoah, Z.; Cheng, H.-Y.;
Chan, G.; Khandekar, S.; Keenan, R. M.; Sarisky, R. T. Identifi-
cation and biological characterization of heterocyclic inhibitors of
the hepatitis C virus RNA-dependent RNA polymerase. J. Biol.
Chem. 2002, 277, 38322–38327.
interaction with Tyr448:N (Figure 3). The designed sulfone
group captures the intermolecular hydrogen bonds of the sulfone
and carboxylate moieties of bound 3. In all other respects, and
as expected, the binding mode of (S)-4c (PDB code 3GNW) is
essentially identical to that of the parent carbonyl (R)-1b
(PDB code 3GNV).16
Small-molecule conformational analysis indicated that the
benzodiazepine scaffold is quite rigid, and much of the
calculated conformational diversity stems from the relatively
flexible benzyloxy group.14 These studies suggest that, with
the exception of the relatively flexible benzyloxy moiety, the
required binding conformation for (R)-2c and (S)-4c is close
to energetically optimal. The benzyloxy group is predicted to
prefer a fully extended conformation rather than the more
compact conformation observed to bind to NS5B. The small-
molecule crystal structure of (S)-4c is also consistent with a
preference of the benzyloxy group for a fully extended con-
formation over the more compact conformation seen in the
NS5B complex (Figure 4).14 Overall, we conclude that the
NS5B-bound conformation of (S)-4c and related compounds
in these chemical series is relatively favorable and readily
accessible. Binding to NS5B requires adoption of a subopti-
mal conformation for the flexible benzyloxy moiety of the
inhibitor.
(8) Burton, G.; Ku, T. W.; Carr, T. J.; Kiesow, T.; Sarisky, R. T.;
Lin-Goerke, J.; Baker, A.; Earnshaw, D. L.; Hofmann, G. A.;
Keenan, R. M.; Dhanak, D. Identification of small molecule
inhibitors of the hepatitis C virus RNA-dependent RNA polymer-
ase from a pyrrolidine combinatorial mixture. Bioorg. Med. Chem.
Lett. 2005, 15, 1553–1556.
In summary, a structure-based design approach generated
a novel sulfone-BZD chemotype that enabled further pro-
gress in HCV drug discovery, yielding specific inhibitors of
HCV NS5B polymerase with low nanomolar potencies in
biochemical and cell-based assays. Crystallography validated
our design process, clearly underscoring the value of public
and proprietary 3D structural information in the drug dis-
covery process. Further characterization of molecules in this
series is ongoing, and these results will be reported in due
course.
(9) Pfefferkorn, J. A.; Greene, M. L.; Nugent, R. A.; Gross, R. J.;
Mitchell, M. A.; Finzel, B. C.; Harris, M. S.; Wells, P. A.; Shelly, J.
A.; Anstadt, R. A.; Kilkuskie, R. E.; Kopta, L. A.; Schwende, F. J.
Inhibitors of HCV NS5B polymerase. Part 1: Evaluation of the
southern region of (2Z)-2-(benzoylamino)-3-(5-phenyl-2-furyl)ac-
rylic acid. Bioorg. Med. Chem. Lett. 2005, 15, 2481–2486.
(10) Powers, J. P.; Piper, D. E.; Li, Y.; Mayorga, V.; Anzola, J.; Chen, J.
M.; Jaen, J. C.; Lee, G.; Liu, J.; Peterson; Tonn, G. R.; Ye, Q.;
Walker, N. P. C.; Wang, Z. SAR and mode of action of novel non-
nucleoside inhibitors of hepatitis C NS5b RNA polymerase. J.
Med. Chem. 2006, 49, 1034–1046.
(11) Yan, S.; Appleby, T.; Gunic, E.; Shim, J. H.; Tasu, T.; Kim, H.;
Rong, F.; Chen, H.; Hamatake, R.; Wu, J. Z.; Hong, Z.; Yao, N.
Isothiazoles as active-site inhibitors of HCV NS5B polymerase.
Bioorg. Med. Chem. Lett. 2007, 17, 28–33.
(12) Howe, A. Y. M.; Cheng, H.; Johann, S.; Mullen, S.; Chunduru, S.
K.; Young, D. C.; Bard, J.; Chopra, R.; Krishnamurthy, G.;
Mansour, T.; O’Connell, J. Molecular mechanism of hepatitis C
virus replicon variants with reduced susceptibility to a benzofuran
inhibitor, HCV-796. Antimicrob. Agents Chemother. 2008, 52,
3327–333.
Acknowledgment. The authors thank Natalie Kindermans
(Tibotec) for analytical SFC, Jef Proost and Hilde Vanbaelen
(J&JPRD, Beerse) for preparative SFC, and Hendrik De
Bondt (Tibotec) for PDB file submission. Protein crystal-
lography was by Sabine Hoppner and Christine Wenzkowski
(Proteros).
(13) Koch, U; Narjes, F. Recent progress in the development of
inhibitors of the hepatitis C virus RNA-dependent RNA polymer-
ase. Curr. Top. Med. Chem. 2007, 7, 1302–1329.
(14) See Supporting Information.
(15) (a) Lansbury, P. T.; Nienhouse, E. J.; Scharf, D. J.; Hilfiker, F. R.
General approach to cycloalkanone synthesis. Intramolecular
Supporting Information Available: Experimental and com-
putational details and crystallographic data for (S)-4c. This
material is available free of charge via the Internet at http://
pubs.acs.org.