TABLE 1. Screening of Different Catalysts for the Reduction of
11a
entry
cat.
temp (°C)
cat. (equiv)
yield (%)
ee (%)a
1
2
3
4
5
6
4
5
6
6
7
8
0
22
0
0
22
22
0.10
0.10
0.10
0.25
0.10
0.10
87
40
84
92
80
76
70(R)
57(R)
97(R)
99(R)
81(S)
82(S)
FIGURE 2. Spiroborate esters derived from nonracemic aminoalcohols
and ethylene glycol.
SCHEME 1. Synthetic Route to 12a
a Determined by chiral HPLC (Chiralcel OD-H column) of acetyl
derivatives.
catalysts 5, 7, and 8 was rather low at 0 °C. The complete
conversion was achieved at room temperature (22 °C) affording
57%, 81%, and 82% ee, respectively, (entries 2, 5, and 6, Table
1). Spiroborate ester 6 provided the best enantioselectivities
(Table 1, entries 3 and 4).
Under the optimized conditions, a variety of O-benzyl oximes
were prepared and reduced in dioxane employing 10% spirobo-
rate ester 6 and 4 equiv of BH3 ·THF at 0 °C. Table 2 illustrates
the results for various O-benzyl oximes that were reduced to
the enantiopure amines in 91-97% ee in good to excellent
isolated yield. Noteworthy, (S)-mexiletine was prepared in 94%
ee and 84% chemical yield (entry 2), illustrating, clearly, the
catalyst ability to differentiate between the methyl and the
alkoxy moiety in the borane reduction. Generally, substituents
on each aryl group influenced slightly the enantioselectivities
(entries 3-11). For example, O-benzyl oximes bearing both
electron-withdrawing and electron-donating aryl groups provided
higher enantioselectivities (entry 3 and 6). The absolute con-
figuration of products was determined by comparing the optical
rotations with the corresponding known compounds.
Our current efforts in the design of novel neuronal nicotinic
acetylcholine receptors (nAChRs) agonists led us to target
enantiopure arylamino ethers as therapeutic agents for the
treatment of CNS and peripheral nervous system disorders.15,16
Within the past ten years, a series of selective agonist of human
neuronal nAChRs, such as Epibatidine (13),17 A-85380 (14),18
ABT-594 (15),19 A-84543 (16),20 and SIB-1553A (17)21 (Figure
prompted us to investigate their application for the enantiose-
lective synthesis of ꢀ-amino ethers of biological interest.
The synthesis of 12a, as outlined in Scheme 1, was selected
as a model protocol. The aryloxy acetophenone 9a was prepared
from the 2-chloro- or 2-bromoacetophenone with different bases
(NaOH, NaH, and K2CO3). After optimization, it was found
that treatment of 2-bromoacetophenone with K2CO3 (1.5 equiv)
and 2,6-dimethylphenol (1.5 equiv) in DMF at room temperature
for 24 h gave the desired ketone in 81% yield. The oxime was
then prepared by addition of NH2OH·HCl and pyridine at 0
°C.14 Since the enantiofacial selectivity in the reduction of CdN
bonds depends not only on the chirality’s transfer agent but also
on the E/Z isomeric purity,13 the main (Z) isomer was easily
obtained by simple recrystallization. The pure (Z)-benzyl oxime
ether 11a was obtained in high yield from (Z)-oxime with use
of NaH and benzyl bromide in DMF at -30 °C.
Initially, we screened the spiroborates presented in Figure 2
for the reduction of O-benzyl oxime 11a. The reactivity of
(13) (a) Houben-Weyl, Methods of Organic Chemistry, Workbench ed. E
21, Stereoselective Synthesis; Helmchen, G., Hoffmann, R. W., Mulzer, J.,
Schaumann, E., Eds; Georg Thieme Verlag: S New York, 1996; Vol. 7, pp 4224-
4231. (b) Glushkov, V. A.; Tolstikov, A. G. Russ. Chem. ReV. 2004, 73, 581–
608. (c) Itsuno, S.; Sakurai, Y.; Shimizu, K.; Ito, K. J. Chem. Soc., Perkin Trans
1 1990, 1859–1863. (d) Bolm, C.; Felder, M. Synlett 1994, 655–666. (e) Cho,
B. T.; Ryu, M. H. Bull. Korean Chem. Soc. 1994, 15, 191–192. (f) Lantos, I.;
Flisak, J.; Liu, L.; Matsunoka, R.; Mendelson, W.; Stevenson, D.; Tubman, K.;
Tucker, L.; Zhang, W.-Y.; Adams, J.; Sorenson, M.; Garigipati, R.; Erhardt, K.;
Ross, S. J. Org. Chem. 1997, 62, 5358–5391. (g) Inoue, T.; Sato, D.; Komura,
K.; Itsuno, S. Tetrahedron Lett. 1999, 40, 5379–5382. (h) Itsuno, S.; Matsumoto,
T.; Sato, D.; Inoue, T. J. Org. Chem. 2000, 65, 5879–5881. (i) Sailes, H. E.;
Watts, J. P.; Whiting, A. J. Chem. Soc., Perkin Trans. 1 2000, 3362–3374. (j)
Fontaine, E.; Namane, C.; Meneyrol, J.; Geslin, M.; Serva, L.; Roussey, E.;
Tissandie, S.; Maftouh, M.; Roger, P. Tetrahedron: Asymmetry 2001, 12, 2185–
2189. (k) Krzeminski, M. P.; Zaidlewicz, M. Tetrahedron: Asymmetry 2003,
14, 1463–1466. (l) Sakito, Y.; Yoneyoshi, Y.; Suzukamo, G. Tetrahedron Lett.
1988, 29, 223–224. (m) Itsuno, S.; Nakano, M.; Miyazaki, K.; Masuda, H.; Ito,
K. J. Chem Soc., Perkin Trans 1 1985, 2039–2044. (n) Itsuno, S.; Sakurai, Y.;
Ito, K.; Hirao, A.; Nakahama, S. Bull. Chem. Soc. Jpn. 1987, 60, 395–396. (o)
Chu, Y.-B.; Shan, Z.-X.; Liu, D.-J.; Sun, N.-N. J. Org. Chem. 2006, 71, 3998–
4001. (p) Huang, X. G.; Ortiz-Marciales, M.; Huang, K.; Stepanenko, V.; Merced,
F. G.; Ayala, A. M.; Correa, W.; De-Jesus, M. Org. Lett. 2007, 9, 1793–1795.
(q) Huang, K.; Ortiz-Marciales, M.; Merced, F. G.; Mele´ndez, H. J.; Correa,
W.; De Jesu´s, M. J. Org. Chem. 2008, 73, 4017–4026.
(15) Lloyd, G. K.; Williams, M. J. Pharmacol. Exp. Ther 2000, 292, 461–
467.
(16) Karlin, A. Nat. ReV. Neurosci. 2002, 3, 102–114.
(17) Carroll, F. I.; Lee, J. R.; Navarro, H. A.; Ma, W.; Brieaddy, L. E.;
Abraham, P.; Damaj, M. I.; Martin, B. R. J. Med. Chem. 2002, 45, 4755–4761.
(18) (a) Abreo, M. A.; Lin, N.-H.; Garvey, D. S.; Gunn, D. E.; Hettinger,
A.-M.; Wasicak, J. T.; Pavlik, P. A.; Martin, Y. C.; Donnelly-Roberts, D. L.;
Anderson, D. J.; Sullivan, J. P.; Williams, M.; Arneric, S. P.; Holladay, M. W.
J. Med. Chem. 1996, 39, 817–825. (b) Sullivan, J. P.; Donnelly-Roberts, D.;
Briggs, C. A.; Anderson, D. J.; Gopalakrishnan, M.; Piattoni-Kaplan, M.;
Campbell, J. E.; McKenna, D. G.; Molinari, E.; Hettinger, A.-M.; Garvey, D. S.;
Wasicak, J. T.; Holladay, M. W.; Williams, M.; Arneric, S. P. Neuropharma-
cology 1996, 35, 725–734.
(19) (a) Bannon, A. W.; Decker, M. W.; Holladay, M. W.; Curzon, P.;
Donnelly-Roberts, D.; Puttfarcken, P. S.; Bitner, R. S.; Diaz, A.; Dickenson,
A. H.; Porsolt, R. D.; Williams, M.; Arneric, S. P. Science 1998, 279, 77–81.
(b) Holladay, M. W.; Wasicak, J. T.; He, Y.; Ryther, K. B.; Bannon, A. W.;
Buckley, M. J.; Kim, D. B.; Decker, M. W.; Anderson, D. J.; Campbell, J. E.;
Kuntzweiler, T. A.; Donnelly-Roberts, D. L.; Piattoni-Kaplan, M.; Briggs, C. A.;
Williams, M.; Arneric, S. P. J. Med. Chem. 1998, 41, 407–412. (c) Abreo, M. A.;
Lin, N.-H.; Garvey, D. S.; Gunn, D. E.; Hettinger, A.-M.; Wasicak, J. T.; Pavlik,
P. A.; Martin, Y. C.; Donnelly-Roberts, D. L.; Anderson, D. J.; Sullivan, J. P.;
Williams, M.; Arneric, S. P.; Holladay, M. W. J. Med. Chem. 1996, 39, 817–
825.
(14) Benjahad, A.; Croisy, M.; Monneret, C.; Bisagni, E.; Mabire, D.; Coupa,
S.; Poncelet, A.; Csoka, I.; Guillemont, J.; Meyer, C.; Andries, K.; Pauwels, R.;
Bethune, M. P.; Himmel, D. M.; Das, K.; Arnold, E.; Nguyen, C. H.; David, S.;
Grierson, D. S. J. Med. Chem. 2005, 48, 1948–1964.
J. Org. Chem. Vol. 73, No. 17, 2008 6929