C O M M U N I C A T I O N S
2222 confirmed that the dipolar cycloaddition had taken place with
the expected regioselectivity.10,15
(4) Hirasawa, Y.; Kobayashi, J.; Obara, Y.; Nakahata, N.; Kawahara, N.; Goda,
Y.; Morita, H. Heterocycles 2006, 68, 2357–2364.
(5) (a) Dawbarn, D.; Allen, S. J. Neuropath. Appl. Neurobiol. 2003, 29, 211–
230. (b) Dauer, W. Science 2007, 411, 60–62.
The conversion of tetracyclic pyrazolidine 22 to (+)-nankaku-
rines A (2) and B (3) commenced with cleavage of the N-N bond
(6) (a) Hefti, F. Annu. ReV. Pharmacol. Toxicol. 1997, 37, 239–267. (b) Luu,
B.; Gonza´lez de Aguilar, J.-L.; Girlanda-Junges, C. Molecules 2000, 5,
1439–1460. (c) Water, S. P.; Tian, Y.; Li, Y.-M.; Danishefsky, S. J. J. Am.
Chem. Soc. 2005, 127, 13514–13515, and references therein.
(7) Kirik, D.; Georgievska, B.; Bjo¨rklund, A. Nat. Neurosci. 2004, 7, 105–
110.
(8) (a) For a review, see: Overman, L. E.; Ricca, D. J. In ComprehensiVe
Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford,
1991; Vol. 2, pp 1007-1046. (b) An intramoleular Mannich reaction was
a key element of the first total synthesis of (()-luciduline; see: Scott, W. L.;
Evans, D. A. J. Am. Chem. Soc. 1972, 94, 4779–4780.
23
with SmI2 and selective in situ reductive methylation of the
secondary amine to generate diamine 23 in 80% yield. Hydro-
genolytic cleavage of the O-benzyl protecting group, followed by
reduction of the amide with AlH3,24 gave diamine alcohol 24 in
72% yield.25 Selective O-mesylation of this intermediate at -40
°C, followed by warming the primary mesylate to ambient
temperature to form the spiropiperidine ring, provided N-benzyl-
nankakurine A (25) in 96% yield. Hydrogenolysis of this intermedi-
ate in acidic methanol gave (+)-nankakurine A (2), [R]24D +13 (c
0.4, MeOH),26a in 99% yield. Standard reductive methylation of
(9) For examples of carboxylate-terminated aza-Prins biscyclization reactions,
see: (a) Heathcock, C. H.; Ruggeri, R. B.; McClure, K. F. J. Org. Chem.
1992, 57, 2585–2594. (b) Lo¨gers, M.; Overman, L. E.; Welmaker, G. S.
J. Am. Chem. Soc. 1995, 117, 9139–9150.
(10) (a) Oppolzer, W.; Petrzilka, M. J. Am. Chem. Soc. 1976, 98, 6722–6723.
(b) Oppolzer, W.; Petrzilka, M. HelV. Chim. Acta 1978, 61, 2755–2762.
(11) (a) Luo, F.-T.; Wang, R.-T. Tetrahedron Lett. 1992, 33, 6835–6838. (b)
See the Supporting Information for details.
nankakurine A (2) delivered (+)-nankakurine B (3), [R]24 +12
D
(c 1.5, MeOH),26b in 80% yield.27
(12) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953–
In summary, the first total syntheses of (+)-nankakurine A (2)
and (+)-nankakurine B (3) were accomplished, respectively, in 13
steps and 20% overall yield and 14 steps and 16% overall yield.
These syntheses, together with the synthesis of the originally
purported structure 1 of nankakurine A, rigorously establish the
relative and absolute configuration of (+)-nankakurines A (2) and
B (3). These enantioselective total syntheses are sufficiently concise
that gram quantities of (+)-nankakurine A (2) and (+)-nankakurine
B (3) will be available for further biological studies.
956.
(13) For selected examples of enyne metathesis, see: (a) Hansen, E. C.; Lee, D.
J. Am. Chem. Soc. 2004, 126, 15074–15080. (b) Smulik, J. A.; Diver, S. T.
Org. Lett. 2000, 2, 2271–2274.
(14) Ipaktschi, J. Chem. Ber. 1984, 117, 856–858.
(15) For a recent review, see: (a) Schantl, J. G. Azomethine Imines. In Science
of Synthesis; Georg Thieme Verlag: Stuttgart, 2004; Vol. 27, p 731. For
select examples, see: (b) Oppolzer, W. Tetrahedron Lett. 1970, 11, 3091–
3094. (c) Oppolzer, W. Tetrahedron Lett. 1972, 13, 1707–1710. (d)
Oppolzer, W. Angew. Chem., Int. Ed. Engl. 1977, 16, 10–23. (e) Jacobi,
P. A.; Martinelli, M. J.; Polanc, S. J. Am. Chem. Soc. 1984, 106, 5594–
5598. (f) Katz, J. D.; Overman, L. E. Tetrahedron 2004, 60, 9559–9568.
(g) Gergely, J.; Morgan, J. B.; Overman, L. E. J. Org. Chem. 2006, 71,
9144–9152.
Acknowledgment. This research was supported by the NIH
Neurological Disorders & Stroke Institute (NS-12389), and by
unrestricted grants from Amgen and Merck. J.R.A. thanks the
University of California President’s Postdoctoral Fellowship Pro-
gram for funding. NMR and mass spectra were obtained at UC
Irvine using instrumentation acquired with the assistance of NSF
and NIH Shared Instrumentation grants. We thank Dr. Hiroshi
Morita, Department of Pharmacognosy, Faculty of Pharmaceutical
Sciences, Hoshi University, Japan, for copies of 1H and 13C NMR
spectra of natural nankakurine B, and Dr. Joe Ziller, X-Ray
Crystallography Facility Director, UC Irvine, for X-ray analyses.
(16) Takami, K.; Mikami, S.; Yorimitsu, H.; Shinokubo, H.; Oshima, K. J. Org.
Chem. 2003, 68, 6627–6631.
(17) Fleming, I.; Maiti, P.; Ramarao, C. Org. Biomol. Chem. 2003, 1, 3989–
4004, and references therein.
(18) (a) Gassman, P. G.; Singleton, D. A.; Wilwerding, J. J.; Chavan, S. P.
J. Am. Chem. Soc. 1987, 109, 2182–2184. (b) Grieco, P. A.; Collins, J. L.;
Handy, S. T. Synlett 1995, 1155–1158.
(19) (a) Anderson, J. C.; Blake, A. J.; Graham, J. P.; Wilson, C. Org. Biomol.
Chem. 2003, 1, 2877–2885. (b) Kim, K. S.; Song, Y. H.; Lee, B. H.; Hahn,
C. S. J. Org. Chem. 1986, 51, 404–407.
(20) In the absence of base, cycloadduct 22 was produced in 25-50% yield,
with the remaining material being a mixture of tricyclic alkene isomers.
The use of triethylamine resulted in 80% yield of 22; however, the reaction
was much slower (24 vs 5 h, 50 mg scale).21
(21) Kanemasa, S.; Tomoshige, N.; Wada, E.; Tsuge, O. Bull. Chem. Soc. Jpn.
1989, 62, 3944–3949.
Supporting Information Available: Experimental details and copies
of 1H and 13C NMR spectra of new compounds; CIF file for compound
22. This material is available free of charge via the Internet at http://
pubs.acs.org.
(22) CCDC 690534. These data can be obtained free of charge from The
quest/cif.
(23) Freshly prepared SmI2 was required to obtain reproducible yields for this
reaction; see the Supporting Information for details.
(24) Brown, H. C.; Yoon, N. M. J. Am. Chem. Soc. 1966, 88, 1464–1472.
(25) To facilitate monitoring reactions and purifying subsequent intermediates,
References
the N-benzyl protecting group was retained until the last step.
(26) Reported optical rotations for the natural products are: (a) nankakurine A:
(1) For reviews of the Lycopodium alkaloids, see: (a) Kobayashi, J.; Morita,
H. In The Alkaloids; Cordell, G. A., Ed.; Academic Press: New York, 2005;
Vol. 61, p 1. (b) Ma, X.; Gang, D. R. Nat. Prod. Rep. 2004, 21, 752–772.
(c) Ayer, W. A.; Trifonov, L. S. In The Alkaloids; Cordell, G. A., Brossi,
A., Eds.; Academic Press: New York, 1994; Vol. 45, p 233. (d) Ayer, W. A.
Nat. Prod. Rep. 1991, 8, 455–463. (e) MacLean, D. B. In The Alkaloids;
Brossi, A., Ed.; Academic Press: New York, 1985; Vol. 26, p 241. (f)
MacLean, D. B. In The Alkaloids; Manske, R. H. F., Ed.; Academic Press:
New York, 1973; Vol. 14, p 348. (g) MacLean, D. B. In The Alkaloids;
Manske, R. H. F., Ed.; Academic Press: New York, 1968; Vol. 10, p 305.
(2) Hirasawa, Y.; Morita, H.; Kobayashi, J. Org. Lett. 2004, 6, 3389–3391.
(3) Ayer, W. A.; Ball, L. F.; Browne, L. M.; Tori, M.; Delbaere, L. T. J.;
Silverberg, A. Can. J. Chem. 1984, 62, 298–302.
[R]21D +16 (c 0.4, MeOH).2 (b) nankakurine B: [R]19D +12 (c 1.0, MeOH)4
(27) Because they are strong bases and readily pick up protons (and potentially
also CO2), we could reproducibly obtain 1H and 13C NMR spectra of the
free-base forms of nankakurines A (2) and B (3) only in CD3OD containing
a trace amount of NaOCD3. These spectra were not identical to those
reported for natural 2 and 3 in CD3OD.2,4 However, by adding successive
amounts of CF3CO2H to samples of synthetic 2 and 3, 1H and 13C NMR
spectra identical to those of the natural products were obtained, consistent
with the notion that the natural samples contained an undetermined amount
of the conjugate acids. See the Supporting Information for details.
JA804624U
9
J. AM. CHEM. SOC. VOL. 130, NO. 34, 2008 11299