ACS Sustainable Chemistry & Engineering
Research Article
modified by concentrated H2SO4 for the adsorption of the pollutants
from wastewater and the dibenzothiophene from fuel oils. Langmuir
2003, 19 (3), 731−736.
(15) Benjamin, M. M. New conceptualization and solution approach
for the ideal adsorbed solution theory (IAST). Environ. Sci. Technol.
2009, 43 (7), 2530−2536.
ORCID
Notes
The authors declare no competing financial interest.
(16) Huang, F.; Tahmasebi, A.; Maliutina, K.; Yu, J. L. Formation of
nitrogen-containing compounds during microwave pyrolysis of
microalgae: Product distribution and reaction pathways. Bioresour.
Technol. 2017, 245, 1067−1074.
(17) Dong, Q.; Niu, M. M.; Bi, D. B.; Liu, W. Y.; Gu, X. X.; Chen, L.
Microwave-assisted catalytic pyrolysis of moso bamboo for high
syngas production. Bioresour. Technol. 2018, 256, 145−151.
(18) Maliutina, K.; Tahmasebi, A.; Yu, J. Pressurized entrained-flow
pyrolysis of microalgae: Enhanced production of hydrogen and
nitrogen-containing compounds. Bioresour. Technol. 2018, 256, 160−
169.
(19) Li, L.; Li, X.; Lee, J. Y.; Keener, T. C.; Liu, Z.; Yao, X. L. The
Effect of Surface Properties in Activated Carbon on Mercury
Adsorption. Ind. Eng. Chem. Res. 2012, 51 (26), 9136−9144.
(20) Han, X.; Lin, H.; Zheng, Y. Adsorptive denitrogenation and
desulfurization of diesel using activated carbons oxidized by
(NH4)2S2O8 under mild conditions. Can. J. Chem. Eng. 2015, 93
(3), 538−548.
(21) Li, N.; Zhu, J.; Ma, X. L.; Zha, Q. F. Tailoring of surface
oxygen-containing functional groups and their effect on adsorptive
denitrogenation of liquid hydrocarbons over activated carbon. AIChE
J. 2013, 59 (4), 1236−1244.
(22) Liu, G.; Zheng, H.; Jiang, Z.; Zhao, J.; Wang, Z.; Pan, B.; Xing,
B. Formation and Physicochemical Characteristics of Nano Biochar:
Insight into Chemical and Colloidal Stability. Environ. Sci. Technol.
2018, 52 (18), 10369−10379.
(23) Chen, W.; Yang, H. P.; Chen, Y. Q.; Li, K. X.; Xia, M. W.;
Chen, H. P. Influence of Biochar Addition on Nitrogen Trans-
formation during Copyrolysis of Algae and Lignocellulosic Biomass.
Environ. Sci. Technol. 2018, 52 (16), 9514−9521.
(24) Prado, G. H. C.; Rao, Y.; de Klerk, A. Nitrogen Removal from
Oil: A Review. Energy Fuels 2017, 31 (1), 14−36.
(25) Boehm, H. Some aspects of the surface chemistry of carbon
blacks and other carbons. Carbon 1994, 32 (5), 759−769.
(26) Song, X.; Ning, P.; Wang, C.; Li, K.; Tang, L. H.; Sun, X.; Ruan,
H. T. Research on the low temperature catalytic hydrolysis of COS
and CS2 over walnut shell biochar modified by Fe−Cu mixed metal
oxides and basic functional groups. Chem. Eng. J. 2017, 314, 418−433.
(27) Li, K.; Ning, P.; Li, K.; Wang, C.; Sun, X.; Tang, L. H.; Liu, S. J.
Low Temperature Catalytic Hydrolysis of Carbon Disulfide on
Activated Carbon Fibers Modified by Non-thermal Plasma. Plasma
Chem. Plasma Process. 2017, 37 (4), 1175−1191.
(28) Qiu, Z.; Chen, J.; Tang, J.; Zhang, Q. A study of cadmium
remediation and mechanisms: Improvements in the stability of walnut
shell-derived biochar. Sci. Total Environ. 2018, 636, 80−84.
(29) Wang, L.-C.; Liu, Q.; Chen, M.; Liu, Y.-M.; Cao, Y.; He; Fan,
K.-N. Structural evolution and catalytic properties of nanostructured
Cu/ZrO2 catalysts prepared by oxalate gel-coprecipitation technique.
J. Phys. Chem. C 2007, 111 (44), 16549−16557.
(30) Zhou, J.-H.; Sui, Z.-J.; Zhu, J.; Li, P.; Chen, D.; Dai, Y. C.;
Yuan, W. K. Characterization of surface oxygen complexes on carbon
nanofibers by TPD, XPS and FT-IR. Carbon 2007, 45 (4), 785−796.
(31) Salame, I. I.; Bandosz, T. J. Surface chemistry of activated
carbons: combining the results of temperature-programmed desorp-
tion, Boehm, and potentiometric titrations. J. Colloid Interface Sci.
2001, 240 (1), 252−258.
(32) Figueiredo, J. L.; Pereira, M. F. R. The role of surface chemistry
in catalysis with carbons. Catal. Today 2010, 150 (1−2), 2−7.
(33) Mbonyiryivuze, A.; Mwakikunga, B.; Dhlamini, S. M.; Maaza,
M. Fourier transform infrared spectroscopy for sepia melanin. 2015
ACKNOWLEDGMENTS
■
Support was provided by the National Natural Science
Foundation of China (No. 21676112, 21975089) and
Wuhan Science and Technology Project (No.
2018060402011259). The help from Prof. Sankar Bhattachar-
ya, Prof. Warren Batchelor, and Dr. Srikanth Chakravarthula
Srivatsa at Monash University is also gratefully acknowledged.
REFERENCES
■
(1) Zainan, N. H.; Srivatsa, S. C.; Li, F. H.; Bhattacharya, S. Quality
of bio-oil from catalytic pyrolysis of microalgae Chlorella vulgaris. Fuel
2018, 223, 12−19.
(2) Duan, D.; Zhang, Y. Y.; Lei, H. W.; Villota, E.; Ruan, R.
Renewable jet-fuel range hydrocarbons production from co-pyrolysis
of lignin and soapstock with the activated carbon catalyst. Waste
Manage. 2019, 88, 1−9.
(3) Li, F. H.; Srivatsa, S. C.; Bhattacharya, S. A review on catalytic
pyrolysis of microalgae to high-quality bio-oil with low oxygeneous
and nitrogenous compounds. Renewable Sustainable Energy Rev. 2019,
108, 481−497.
(4) Zainan, N. H.; Srivatsa, S. C.; Bhattacharya, S. Catalytic pyrolysis
of microalgae Tetraselmis suecica and characterization study using in
situ Synchrotron-based Infrared Microscopy. Fuel 2015, 161, 345−
354.
(5) Li, F. H.; Srivatsa, S. C.; Batchelor, W.; Bhattacharya, S. A study
on growth and pyrolysis characteristics of microalgae using
Thermogravimetric Analysis-Infrared Spectroscopy and synchrotron
Fourier Transform Infrared Spectroscopy. Bioresour. Technol. 2017,
229, 1−10.
(6) Li, F. H.; Katz, L.; Qiu, S. Y. Adsorptive selectivity and
mechanism of three different adsorbents for nitrogenous compounds
removal from microalgae bio-oil. Ind. Eng. Chem. Res. 2019, 58 (10),
3959−3968.
(7) Kandel, K.; Frederickson, C.; Smith, E. A.; Lee, Y. J.; Slowing, I.
I. Bifunctional adsorbent-catalytic nanoparticles for the refining of
renewable feedstocks. ACS Catal. 2013, 3 (12), 2750−2758.
(8) Hazrat, M. A.; Rasul, M. G.; Khan, M. M. K. A Study on
Thermo-catalytic Degradation for Production of Clean Transport
Fuel and Reducing Plastic Wastes. Procedia Eng. 2015, 105, 865−876.
(9) Almarri, M.; Ma, X.; Song, C. Selective adsorption for removal of
nitrogen compounds from liquid hydrocarbon streams over carbon-
and alumina-based adsorbents. Ind. Eng. Chem. Res. 2009, 48 (2),
951−960.
(10) Kim, J. H.; Ma, X. L.; Zhou, A. N.; Song, C. S. Ultra-deep
desulfurization and denitrogenation of diesel fuel by selective
adsorption over three different adsorbents: A study on adsorptive
selectivity and mechanism. Catal. Today 2006, 111 (1−2), 74−83.
(11) Wen, J.; Han, X.; Lin, H. F.; Zheng, Y.; Chu, W. A critical study
on the adsorption of heterocyclic sulfur and nitrogen compounds by
activated carbon: equilibrium, kinetics and thermodynamics. Chem.
Eng. J. 2010, 164 (1), 29−36.
(12) Sano, Y.; Choi, K. H.; Korai, Y.; Mochida, I. Selection and
further activation of activated carbons for removal of nitrogen species
in gas oil as a pretreatment for its deep hydrodesulfurization. Energy
Fuels 2004, 18 (3), 644−651.
(13) Sano, Y.; Choi, K. H.; Korai, Y.; Mochida, I. Adsorptive
removal of sulfur and nitrogen species from a straight run gas oil over
activated carbons for its deep hydrodesulfurization. Appl. Catal., B
2004, 49 (4), 219−225.
(14) Jiang, Z.; Liu, Y.; Sun, X. P.; Tian, F. P.; Sun, F. X.; Liang, C.
H.; You, W. S.; Han, C. R.; Li, C. Activated carbons chemically
(34) Gibson, J. A. A.; Mangano, E.; Shiko, E.; Greenaway, A. G.;
Gromov, A. V.; Lozinska, M. M.; Friedrich, D.; Campbell, E. E. B.;
16537
ACS Sustainable Chem. Eng. 2019, 7, 16529−16538