Journal of the American Chemical Society
Page 4 of 5
In summary, we have developed
a
mild, rapid and
(7) Noda, H.; Erős, G.; Bode, J. W. J. Am. Chem. Soc. 2014, 135, 5611–
5614.
1
2
3
4
5
6
7
8
chemoselective acylation of in situ generated N-chlorinated
amines or amides using KAT reagents. As the key starting
materials – potassium acyltrifluoroborates – are becoming
widely available, we believe this method will emerge as an
attractive alternative to classical acylation chemistry by being
completely tolerant to the presence of water, fast at acidic
pH, and offering unique chemoselectivity over many
different functional groups, including secondary amines.
(8) Noda, H.; Bode, J. W. J. Am. Chem. Soc. 2015, 137, 3958–3966.
(9) (a) Molander, G. A.; Raushel, J.; Ellis, N. M. J. Org. Chem. 2010, 75,
4304–4306. (b) Dumas, A. M.; Bode, J. W. Org. Lett. 2012, 14, 2138–
2141. (c) Erős, G.; Kushida, Y.; Bode, J. W. Angew. Chem. Int. Ed. 2014,
53, 7604–7607. (d) He, Z.; Zajdlik, A.; Yudin, A. K. Acc. Chem. Res. 2014,
47, 1029–1040. (e) Liu, S. M.; Mazunin, D.; Pattabiraman, V. R.; Bode, J.
W. Org. Lett. 2016, 18, 5336–5339.
(10) (a) Antelo, J. M.; Arce, F.; Parajó, M. Int. J. Chem. Kinet. 1995, 27,
637–647. (b) Qiang, Z.; Adams, C. D. Environ. Sci. Technol. 2004, 38,
1435–1444. (c) Zhong, Y. L.; Zhou, H.; Gauthier, D. R.; Lee, J.; Askin, D.;
Dolling, U. H.; Volante, R. P. Tetrahedron Lett. 2005, 46, 1099–1101.
(11) (a) Brown, H. C.; Lane, C. F. J. Am. Chem. Soc. 1970, 92 (1968),
6660–6661. (b) Thiebes, C.; Prakash, G. K. S.; Petasis, N. A.; Olah, G. A.
Synlett 1998, 141–142. (c) Szumigala, R. H.; Devine, P. N.; Gauthier, D.
R.; Volante, R. P. J. Org. Chem. 2004, 69, 566–569.
(12) (a) Hurd, C. D.; Prapas, A. G. J. Org. Chem. 1958, 24, 388–392.
(b) Mumm, O.; Hesse, H.; Volquartz, H. Chem. Ber. 1915, 48, 379–391.
(c) Schwarz, J. J. Org. Chem. 1972, 37, 2906–2908. (d) Schnyder, A.;
Indolese, A. F. J. Org. Chem. 2002, 67, 594–597. (e) Li, H.; Dong, K.;
Neumann, H.; Beller, M. Angew. Chem. Int. Ed. 2015, 54, 10239–10243.
(f) Sperry, J. Synthesis 2011, 22, 3569–3580. (g) Li, X.; Danishefsky, S. J. J.
Am. Chem. Soc. 2008, 130, 5446–5448. (h) Bates, R. B.; Fletcher, F. A.;
Janda, K. D.; Miller, W. A. J. Org. Chem. 1984, 49, 3038. (i) Tomizawa, T.;
Orimoto, K.; Niwa, T.; Nakada, M. Org. Lett. 2012, 14 , 6294–6297. (j)
Chan, J.; Baucom, K. D.; Murry, J. a. J. Am. Chem. Soc. 2007, 129, 14106–
14107. (k) Bian, Y.-J.; Chen, C.-Y.; Huang, Z.-Z. Chem. Eur. J. 2013, 19,
1129–1133.
(13) Worley, S. D.; Williams, D. E.; Barnela, S. B. Water Res. 1987, 21,
983–988.
(14) We have previously documented the better performance of KAT
reagents under acidic pH. See ref. 7 for details.
(15) Calvo, P.; Crugeiras, J.; Ríos, A. J. Org. Chem. 2009, 74, 5381–
5389.
(16) Hermant, B. M.; Basu, O. D.; Ph, D.; Eng, P. J. Environ. Eng. 2013,
139, 522–529.
(17) Schäfer, G.; Matthey, C.; Bode, J. W. Angew. Chem. Int. Ed. 2012,
51, 9173–9175.
(18) Hiegel, G. A.; Hogenauer, T. J.; Lewis, J. C. Synth. Commun.
2005, 35, 2099–2105.
(19) (a) Koehn, F. E.; Longley, R. E.; Reed, J. K. J. Nat. Prod. 1992, 55,
613–619. (b) Shangguan, N.; Katukojvala, S.; Greenberg, R.; Williams, L. J.
J. Am. Chem. Soc 2003, 125, 7754–7755. (c) Nicolaou, K. C.; Mathison,
C. J. N. Angew. Chem. Int. Ed. 2005, 44, 5992–5997. (d) Habibi, Z.;
Salehi, P.; Zolfigol, M. A.; Yousefi, M. Synlett 2007, 5, 812–814. (e)
Pacher, T.; Raninger, A.; Lorbeer, E.; Brecker, L.; But, P. P.-H.; Greger, H.
J. Nat. Prod. 2010, 73, 1389–1393.
(20) Studies were also performed on the naturally occurring peptide
leupeptin. Crude HPLC showed a clean trace with two overlapping peaks
with the expected product mass; however, we could not fully characterize
the amide product.
(21) Bode, J. W.; Fox, R. M.; Baucom, K. D. Angew. Chem. Int. Ed.
2006, 45, 1248–1252.
(22) Cho, C.-C.; Liu, J. N.; Chien, C. H.; Shie, J. J.; Chen, Y. C.; Fang, J.
M. J. Org. Chem. 2009, 74, 1549–1556.
(23) For a review on the field, see: Ekoue-Kovi, K.; Wolf, C. Chem. Eur.
J. 2008, 14, 6302–6315.
(24) Achar, T. K.; Mal, P. J. Org. Chem. 2015, 80, 666–672.
(25) Cadoni, R.; Porcheddu, A.; Giacomelli, G.; De Luca, L. Org. Lett.
2012, 14, 5014–5017.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ASSOCIATED CONTENT
Supporting
Information.
Experimental
procedures,
supplementary results and spectroscopic data for new
compounds. This material is available free of charge via the
AUTHOR INFORMATION
Corresponding Author
Funding Sources
This research was supported by ETH Zürich.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENT
Gábor Erős, Dmitry Mazunin, Sizhou M. Liu and Dino Wu
(ETH Zürich) are acknowledged for fruitful discussions and
preparation of starting materials.
REFERENCES
(1) (a) Greenburg, A., Breneman, C. M., Liebman, J. F., Eds.; The Am-
ide Linkage: Selected Structural Aspects in Chemistry, Biochemistry and
Materials Science; Wiley, New York, 2000. (b) Roughley, S. D.; Jordan, A.
M. J. Med. Chem. 2011, 54, 3451–3479.
(2) (a) Constable, D. J. C.; Dunn, P. J.; Hayler, J. D.; Humphrey, G. R.;
Leazer, Jr., J. L.; Linderman, R. J.; Lorenz, K.; Manley, J.; Pearlman, B. a.;
Wells, A.; Zaks, A.; Zhang, T. Y. Green Chem. 2007, 9, 411–420. (b)
Monks, B. M.; Whiting, A. In Sustainable Catalysis; Dunn, P. J. Hii, K. K.
Krische, M. J. Williams, M. T., Eds.; Wiley, New York, 2013; pp. 89–110.
(3) For catalytic amide-forming processes, see: (a) Pattabiraman, V. R.;
Bode, J. W. Nature 2011, 480, 471–479. (b) Al-Zoubi, R. M.; Marion, O.;
Hall, D. G. Angew. Chem. Int. Ed. 2008, 47, 2876–2879. (c) Yoo, W. J.; Li,
C. J. J. Am. Chem. Soc. 2006, 128, 13064–13065. (d) Gunanathan, C.;
Ben-David, Y.; Milstein, D. Science 2007, 317, 790–792. (e) Chan, W.-K.;
Ho, C.-M.; Wong, M.-K.; Che, C.-M. J. Am. Chem. Soc. 2006, 128, 14796–
14797. (f) Bode, J. W.; Sohn, S. S. J. Am. Chem. Soc. 2007, 129, 13798–
13799. (g) Vora, H. U.; Rovis, T. J. Am. Chem. Soc. 2007, 129, 13796–
13797. (h) Shen, B.; Makley, D. M.; Johnston, J. N. Nature 2010, 465,
1027–1032. (i) Soulé, J. F.; Miyamura, H.; Kobayashi, S. J. Am. Chem. Soc.
2011, 133, 18550–18553. (j) Shackleford, J. P.; Shen, B.; Johnston, J. N.
Proc. Natl. Acad. Sci. 2012, 109, 44–46.
(4) (a) Dawson, P. E.; Muir, T. W.; Clark-Lewis, I.; Kent, S. B. H. Sci-
ence 1994, 266, 776–779. (b) Hackenberger, C. P. R.; Schwarzer, D. An-
gew. Chem. Int. Ed. 2008, 47, 10030–10074.
(5) For non-chemoselective amide-forming processes in water, see: (a)
MacMillan, D. S.; Murray, J.; Sneddon, H. F.; Jamieson, C.; Watson, A. J. B.
Green Chem. 2013, 15, 596–600. (b) Gabriel, C. M.; Keener, M.; Gallou,
F.; Lipshutz, B. H. Org. Lett. 2015, 17, 3968–3971.
(26) Markó, I. E.; Mekhalfia, A. Tetrahedron Lett. 1990, 31, 7237–
7240.
(27) Measured by UV-Vis and HPLC techniques (8.3 M–1s–1 and
12.1 M–1s–1 respectively).
(6) Dumas, A. M.; Molander, G. A.; Bode, J. W. Angew. Chem. Int. Ed.
2012, 51, 5683–5686.
(28) Cline, G. W.; Hanna, S. B. J. Org. Chem. 1988, 53, 3583–3586.
ACS Paragon Plus Environment