example, Wenkert23-25 and Takei26 independently discov-
ered that vinyl and aryl sulfides could generate 1,2-disub-
stituted olefins via Kumada-type coupling. Both researchers
reported that vinyl sulfides show higher reactivity than aryl
sulfides. Takei later reported that allylic sulfides were also
suitable substrates for the cross-coupling reaction.27 Tri-28
and tetrasubstituted29 olefins have also been generated by
cross-coupling of the corresponding vinyl sulfides. In 1987,
Naso and co-workers reported that 1,1-disubstituted vinyl
sulfides were also suitable substrates for cross-coupling,
although only two examples were given.30,31 We envisioned
that this process could serve as a convenient method for
constructing 1,1-disubstituted olefins.
For the Kumada-type cross-coupling protocol to be
synthetically useful, a variety of 1,1-disubstituted vinyl
sulfides must be readily available. Until recently, the regi-
oselective synthesis of branched alkyl vinyl sulfides had been
elusive. Although there had been several metal-catalyzed
reactions involving thiols that have been reported for the
synthesis of aryl vinyl sulfides,32 reactions involving alkyl
thiols had been explored to a lesser extent.33-35 Our recent
discovery that Tp*Rh(PPh3)2 [Tp* ) hydrotris(3,5-dimeth-
ylpyrazolylborate)] (Figure 1) catalyzes alkyne hydrothiola-
tion of a wide range of alkynes (aliphatic, aromatic, internal)
and thiols to afford 1,1-disubstituted vinyl sulfides in high
yields and selectivity has alleviated this shortcoming.36 As
such, we anticipated that this methodology could be used to
assemble vinyl sulfides for use in Kumada-type cross-coupling.
An ideal vinyl sulfide cross-coupling partner would
undergo efficient cross-coupling and would have a leaving
group of low molecular weight in order to minimize waste.
Scheme 1
.
One-Pot Strategy toward the Synthesis of
1,1-Disubstituted Olefins
A few metal-catalyzed procedures are available for the
formation of 1,1-disubstituted olefins. Among the most
widely used is the cationic Heck reaction8-11 which
involves the use of an organohalide, typically an aryl halide,
and a monosubstituted olefin. Although the corresponding
reactions using alkyl halides have been reported, they have
been limited mainly to activated alkyl halides and those
lacking ꢀ-hydrogens.12-16 Only a few examples of the Heck
reaction involving unactivated alkyl halides have been
published.17 An alternate strategy involves the cross-coupling
of an aryl halide with a vinyl organometallic reagent,
typically derived from a vinyl halide.18,19 A signifiant
drawback to using vinyl halides is the requirement for use
of a strong Lewis or Bronsted acid, such as BBr3 or HBr,
for their synthesis; these harsh conditions have evident
functional group incompatibility. Likewise, although vinyl
triflates can also be used in transition-metal-catalyzed cross-
coupling, their synthesis also presents some functional group
incompatibility.18-21
Other cross-coupling partners, including vinyl sulfides,
have also been reported to undergo cross-coupling.22-29 For
(10) Ozawa, F.; Kubo, A.; Hayashi, T. J. Am. Chem. Soc. 1991, 113,
1417–1419
.
(11) Cabri, W.; Candiani, I.; DeBernardinis, S.; Francalanci, F.; Penco,
S. J. Org. Chem. 1991, 56, 5796–5800
(29) (a) Gerard, J.; Hevesi, L. Tetrahedron 2004, 60, 367–381. (b) Itami,
K.; Mineno, M.; Muraoka, N.; Yoshida, J.-I. J. Am. Chem. Soc. 2004, 126,
.
(12) Wu, G-Z.; Lamaty, F.; Negishi, E-I. J. Org. Chem. 1989, 54, 2507–
11778–11779
(30) Fiandanese, V.; Marchese, G.; Naso, F.; Ronzini, L. Synthesis 1987,
11, 1034–1036
.
2508
.
(13) Liansheng, W.; Pan, Y.; Jiang, X.; Hu, H. Tetrahedron Lett. 2000,
.
41, 725–727
.
(31) Tanaka has reported the Ni-catalyzed addition of allylic sulfides
and selenides to alkynes. See: (a) Hua, R.; Takeda, H.; Onozawa, S-y.;
Abe, Y.; Tanaka, M. Org. Lett. 2007, 9, 263–266. (b) Yamashita, K-i.;
Takeda, H.; Kashiwabara, T.; Hua, R.; Shimada, S.; Tanaka, M. Tetrahedron
(14) Higuchi, K.; Sawada, K.; Nambu, H.; Shogaki, T.; Kita, Y. Org.
Lett. 2003, 5, 3703–3704
.
(15) Narahashi, H.; Yamamoto, A.; Shimizu, I. Chem. Lett. 2004, 33,
348–349
.
Lett. 2007, 48, 6655–6659.
(16) Glorius, F. Tetrahedron Lett. 2003, 44, 5751–5754
.
(32) (a) Kondo, T.; Mitsudo, T. Chem. ReV. 2000, 100, 3205–3220. (b)
Togni, A., Grutzmacher, H., Eds. In Catalytic Heterofunctionalization: From
Hydroamination to Hydrozirconation; Wiley-VCH: Weinheim, 2001; pp
289-251. (c) Alonso, F.; Beletskaya, I. P.; Yus, M. Chem. ReV. 2004, 104,
3079–3159.
(17) (a) Firmansjah, L.; Fu, G. C. J. Am. Chem. Soc. 2007, 129, 11340–
11341. (b) Bra¨se, S; Waegell, B.; de Meijere, A. Synthesis 1998, 148–152.
(18) Littke, A. F.; Dai, C.; Fu, G. C. J. Am. Chem. Soc. 2000, 122,
4020–4028
(19) Suzuki, A. J. Organomet. Chem. 1999, 576, 147–168
(20) Stang, P. J.; Kowalski, M. H.; Schiavelli, M. D.; Longford, D. J. Am.
Chem. Soc. 1989, 111, 3347–3356
.
.
(33) Radical reactions: Ichinose, Y.; Wakamatsu, K.; Nozaki, K.;
Birbaum, J. L.; Oshima, K.; Utimoto, K. Chem. Lett. 1987, 1647–1650
.
.
(34) Nucleophilic reactions:(a) Kondoh, A.; Takami, K.; Yorimitsu, H.;
Oshima, K J. Org. Chem. 2005, 70, 6468–6473. (b) Truce, W. E.; Simms,
J. A. J. Am. Chem. Soc. 1956, 78, 2756–2759. (c) Truce, W.; Tichenor,
(21) Comins, D. L.; Dehghani, A. Tetrahedron Lett. 1992, 33, 6299–
6302
.
(22) Other catalytic methods involving C-S bond cleavage: (a) Egi,
M.; Liebeskind, L. S Org. Lett. 2003, 5, 801–802. (b) Kusturin, C. L.;
Liebeskind, L. S.; Neumann, W. L. Org. Lett. 2002, 4, 983–985. (c) Savarin,
C.; Srogl, J.; Liebeskind, L. S. Org. Lett. 2001, 3, 91–93. (d) Yu, Y.;
Liebeskind, L. S. J. Org. Chem. 2004, 69, 3554–3557. (e) Tamao, K. J.
Organomet. Chem. 2002, 653, 23–26. (f) Vogel, P.; Dubbaka, S. R. Angew.
Chem., Int. Ed. 2005, 44, 7674–7684
(23) Wenkert, E.; Ferreira, T. W.; Michelotti, E. L. J. Chem. Soc., Chem.
Commun. 1979, 637–638
(24) Wenkert, E.; Fernandes, J. B.; Michelotti, E. L.; Swindell, C. S.
Synthesis 1983, 701–703
(25) Wenkert, E.; Shepard, M. E.; Mcphail, A. T. J. Chem. Soc., Chem.
Commun. 1986, 1390–1391
(26) Okamura, H.; Miura, M.; Takei, H. Tetrahedron Lett. 1979, 1, 43–
G. J. W. J. Organomet. Chem. 1972, 37, 2391–2396.
(35) Metal-catalyzed reactions giving 1,1-disubstituted aryl vinyl sulfides:
(a) Kuniyasu, H.; Ogawa, A.; Sato, K.-I.; Ryu, I.; Kambe, N.; Sonoda, N
J. Am. Chem. Soc. 1992, 114, 5902–5903. (b) Ba¨ckvall, J.-E.; Ericcson, A.
J. Org. Chem. 1994, 59, 5850–5851. (c) Han, L.-B.; Zhang, C.; Yazawa,
H; Shimada, S. J. Am. Chem. Soc. 2004, 126, 5080–5081. (d) Ananikov,
V. P.; Orlov, N. V.; Beletskaya, I. P.; Khrustalev, V. N.; Antipin, M. Y.;
Timofeeva, T. V. J. Am. Chem. Soc. 2007, 129, 7252–7253. (e) Ananikov,
V. P.; Malyshev, D. A.; Beletskaya, I. P.; Aleksandrov, G. G.; Eremenko,
I. L. AdV. Synth. Catal. 2005, 347, 1993–2001. (f) Ananikov, V. P.;
Zalesskiy, S. S.; Orlov, N. V.; Beletskaya, I. P. Russ. Chem. Bull., Int. Ed.
2006, 55, 2109–2113. (g) Malyshev, D. A.; Scott, N. M.; Marion, N.;
Stevens, E. D.; Ananikov, V. P.; Beletskaya, I. P.; Nolan, S. P. Organo-
metallics 2006, 25, 4462–4470. (h) Ananikov, V. P.; Orlov, N. V.;
.
.
.
.
46.
Beletskaya, I. P. Organometallics 2006, 25, 1970–1977.
(27) Okamura, H.; Takei, H. Tetrahedron Lett. 1979, 36, 3425–2428
(28) Gerard, J.; Hevesi, L. Tetrahedron 2001, 57, 9109–9121
.
(36) Cao, C; Fraser, L. R.; Love, J. A. J. Am. Chem. Soc. 2005, 127,
.
17614–17615.
3942
Org. Lett., Vol. 10, No. 18, 2008