3908
J.-J. Park et al. / Bioorg. Med. Chem. Lett. 18 (2008) 3906–3909
Table 1
no activity except IL-13 production at high dose. The isomer
Physical properties of KRN7000 stereoisomers
1d, having the inverted C4-OH group stereochemistry when
compared with 1c, displays comparable potency (proliferation
and cytokine secretion) with those for 1c (KRN7000). Thus, the
3-D spatial orientations of C2–NH2 group and C3-OH group of
phytosphingosine appear crucial for the activity, and the config-
uration of C2–NH2 group is much more important than that of
C3-OH group; the stereochemical variation of C4-OH group
seems not so significant. The more extensive studies of the bio-
logical activity of KRN7000 stereoisomers are in progress.19
Compound
½
a 2D5
ꢂ
(pyridine)
Mp (°C)
1a
1b
1c
1d
1e
1f
+35.3 (c 0.30)
+21.7 (c 0.51)
+42.4 (c 0.50)
+46.2 (c 0.51)
+46.6 (c 0.43)
+53.4 (c 0.35)
+42.1 (c 0.49)
+35.3 (c 0.36)
187
189
190
191
182
197
194
183
1g
1h
Acknowledgment
This work was supported by the Korea Research Foundation
grant funded from the Korean Government (MOEHRD: KRF-2005-
070-C00078).
protecting group. Thus, we first prepared substantial quantities
of protected derivatives of the eight stereoisomers of phyto-
sphingosine (Fig. 2: 2a–2h) from
gosine stereoisomers as previously reported.14,15 Briefly, both the
- and -serine were converted to the four stereoisomers of N,O-
L- and D-serine via four sphin-
References and notes
L
D
diprotected sphingosine. The double bond of each sphingosine
isomer was epoxidized to provide the ‘up’ and ‘down’ epoxides,
which after separation was regioselectively reduced to give the
appropriately protected phytosphingosine isomers, respectively.
In this way each sphingosine stereoisomer was converted to
two phytosphingosine isomers shown in Figure 2. Transforma-
1. Morita, M.; Motoki, K.; Akimoto, K.; Natori, T.; Sakai, T.; Sawa, E.; Yamaji, K.;
Koezuka, Y.; Kobayashi, E.; Fukushima, H. J. Med. Chem. 1995, 38, 2176.
2. (a) Kronenberg, M. Annu. Rev. Immunol. 2005, 23, 877; (b) Savage, P. B.; Teyton,
L.; Bendelac, A. Chem. Soc. Rev. 2006, 35, 771; (c) Tsuji, M. Cell. Mol. Life Sci.
2006, 63, 1889; (d) Stronge, V. S.; Salio, M.; Jones, E. Y.; Cerundolo, V. Trends
Immunol. 2007, 28, 455.
3. (a) Kakimi, K.; Guidotti, L. G.; Koezuka, Y.; Chisari, F. V. J. Exp. Med. 2000, 192,
921; (b) Fuji, N.; Ueda, Y.; Fujiwara, H.; Itoh, T.; Yoshimura, T.; Yamagishi, H.
Clin. Cancer Res. 2000, 6, 3380; (c) Wang, B.; Geng, Y.-B.; Wang, C.-R. J. Exp. Med.
2001, 194, 313; (d) Van Kaer, L. Nat. Rev. Immunol. 2005, 5, 31.
4. (a) Motoki, K.; Kobayashi, E.; Uchida, T.; Fukushima, H.; Koezuka, Y. Bioorg.
Med. Chem. Lett. 1995, 5, 705; (b) Kawano, T.; Cui, J.; Koezuka, Y.; Toura, I.;
Kaneko, Y.; Motoki, K.; Ueno, H.; Nakagawa, R.; Sato, H.; Konodo, E.; Koseki, H.;
Taniguchi, M. Science 1997, 278, 1626; (c) Brossay, L.; Naidenko, O.; Burdin, N.;
Matsuda, J.; Sakai, T.; Kronengerg, M. J. Immunol. 1998, 161, 5124; (d) Sidobre,
S.; Hammond, K. J. L.; Sidobre, L. B.; Maltsev, S. D.; Richardson, S. K.; Ndonye, R.
M.; Howell, A. R.; Sakai, T.; Besra, G. S.; Porcelli, S. A.; Kronenberg, M. Proc. Natl.
Acad. Sci. U.S.A. 2004, 101, 12254; (e) Trappeniers, M.; Goormans, S.;
Van Beneden, K.; Decruy, T.; Linclau, B.; Al-Shamkhani, A.; Elliot, T.;
Ottensmeier, C.; Werner, J.M.; Elewaut, D.; Van Calenbergh, S.ChemMedChem
5. (a) Barbieri, L.; Costantino, V.; Fattorusso, E.; Mangoni, A.; Aru, E.; Parapini, S.;
Taramelli, D. Eur. J. Org. Chem. 2004, 468; (b) Barbieri, L.; Costantino, V.;
Fattorusso, E.; Mangoni, A.; Basilico, N.; Mondani, M.; Taramelli, D. Eur. J. Org.
Chem. 2005, 3279.
6. (a) Zhou, X.-T.; Forestier, C.; Goff, R. D.; Li, C.; Teyton, L.; Bendelac, A.;
Savage, P. B. Org. Lett. 2002, 4, 1267; (b) Xing, G.-W.; Wu, D.; Poles, M. A.;
Horowitz, A.; Tsuji, M.; Ho, D. D.; Wong, C.-H. Bioorg. Med. Chem. 2005, 13,
2907; (c) Wu, D.; Xing, G.-W.; Poles, M. A.; Horowitz, A.; Kinjo, Y.; Sullivan,
B.; Bodmer-Narkevitch, V.; Plettenburg, O.; Kronenberg, M.; Tsuji, M.; Ho, D.
D.; Wong, C.-H. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 1351; (d) There are
variant interpretations on the C3-sulfated glycolipid.6b,c It is likely that the
sulfated glycolipid might be hydrolyzed to C3-OH, which then displays the
physiological activity.
7. (a) Miyamoto, K.; Miyake, S.; Yamamura, T. Nature 2001, 413, 531; (b) Goff, R.
D.; Gao, Y.; Mattner, J.; Zhou, D.; Yin, N.; Cantu, C., III; Teyton, L.; Bendelac, A.;
Savage, P. B. J. Am. Chem. Soc. 2004, 126, 13602.
8. Yu, K. O. A.; Im, J. S.; Molano, A.; Dutronc, Y.; Illarionov, P. A.; Forestier, C.;
Fujiwara, N.; Arias, I.; Miyake, S.; Yamamura, T.; Chang, Y. T.; Besra, G. S.;
Porcelli, S. A. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 3383.
tion of each phytosphingosine stereoisomer to
a-galactosylcera-
mide is illustrated for the case of isomer 2a, and all the other
isomers were similarly transformed to the corresponding stereo-
isomers of KRN7000. Hydrogenolysis of N-Cbz-protected 2a over
Pd/C generated the free amine, which was conveniently acylated
with the N-hydroxysuccinimide activated ester 3 in the presence
of triethylamine16 to give ceramide 4a. The two hydroxyl groups
of 4a were protected with TBSOTf and 2,6-lutidine in CH2Cl2 to
yield the O-TBS-protected ceramide 5a. Now the regioselective
removal of the TBS group from the primary hydroxyl in 5a
was needed, and it was accomplished by treatment with HFꢀpy
in THF-pyridine17 to afford the intermediate 6a. The glycosyla-
tion of 6a with the perbenzylated galactosyl trichloroacetimidate
718 in the presence of BF3ꢀOEt2 gave
a-galactoside 8a in modest
yield. All protecting groups in 8a were sequentially removed by
treatment with TBAF in THF, and the resulting diol 9a with
Pd(OH)2/C in EtOH-CHCl3 to provide the target compound,
KRN7000 stereoisomer 1a (Scheme 1). By employing the identi-
cal procedures on the other stereoisomers of phytosphingosine
(2b–2h), the corresponding KRN7000 stereoisomers (1b–1h)
were uneventfully prepared. The melting point and specific rota-
tion data for all stereoisomers of KRN7000 are listed in Table 1.
The biological activities of these isomers have been examined
in both mouse and human iNKT cells in terms of in vitro prolif-
eration and induction of IFN-c, IL-4 and IL-13. The preliminary
9. (a) Fujio, M.; Wu, D.; Garcia-Navarro, R.; Ho, D. D.; Tsuji, M.; Wong, C.-H. J. Am.
Chem. Soc. 2006, 128, 9022; (b) Toba, T.; Murata, K.; Nakanishi, K.; Takahashi,
B.; Takemoto, N.; Akabane, M.; Nakatsuka, T.; Imajo, S.; Yamamura, T.; Miyake,
S.; Annoura, H. Bioorg. Med. Chem. Lett. 2007, 17, 2781.
10. Franck, R. W.; Tsuji, M. Acc. Chem. Rev. 2006, 39, 692.
11. Zajonc, D. M.; Cantu, C., III; Mattner, J.; Zhou, D.; Savage, P. B.; Bendelac, A.;
Wilson, I. A.; Teyton, L. Nat. Immunol. 2005, 6, 810.
12. Koch, M.; Stronge, V. S.; Shepherd, D.; Gadola, S. D.; Mathew, B.; Ritter, G.;
Fersht, A. R.; Besra, G. S.; Schmidt, R. R.; Jones, E. Y.; Cerundolo, V. Nat. Immunol.
2005, 6, 819.
13. Borg, N. A.; Wun, K. S.; Kjer-Nielsen, L.; Wilce, M. C. J.; Pellicci, D. G.; Koh, R.;
Besra, G. S.; Bharadwaj, M.; Godfrey, D. I.; McCluskey, J.; Rossjohn, J. Nature
2007, 448, 44.
data indicate the following trends for the stereoisomers of
KRN7000; (1) differential activity was observed between mouse
and human iNKT cells with mouse cells being more sensitive,
and (2) differential activity was also observed for different iso-
mers. More specifically, with mouse iNKT cells the following
observations have been made: (1) good in vitro proliferation
with 1c (KRN7000) > 1a, 1d, 1g, and much weaker proliferation
with 1b, 1f, and 1h, and (2) good induction of IFN-
c, IL-4/IL-13
with 1c and 1d, and weak induction of IFN- and IL-13 at a high
c
dose of Ia, and induction of IL-4 at high dosage of 1b, 1a, 1h.
14. (a) Chung, S. K.; Lee, J. M. Tetrahedron: Asymmetry 1999, 10, 1441; (b) Lee, J. M.;
Lim, H. S.; Chung, S. K. Tetrahedron: Asymmetry 2002, 13, 343; (c) Lee, J. M.; Lim,
H. S.; Seo, K. C.; Chung, S. K. Tetrahedron: Asymmetry 2003, 14, 3639.
15. (a) Chang, Y. T.; Choi, J.; Ding, S.; Prieschl, E. E.; Baumruker, T.; Lee, J. M.; Chung,
S. K.; Schultz, P. G. J. Am. Chem. Soc. 2002, 124, 1856; (b) Park, J. J.; Lee, J. H.; Li,
With human iNKT cells, the following trends have been ob-
served; (1) the stereoisomers (2S) derived from
1a, 1b, 1c, and 1d show high potency (IFN- , IL-4, and IL-13 pro-
duction), while the isomers (2R) derived from -serine, that is,
1e, 1g, and 1h exhibit weak potency (IFN- and IL-4 production),
but decent IL-13 production, and (2) isomer 1f shows virtually
L-serine, namely
c
D
c
16. Kim, S.; Song, S.; Lee, T.; Jung, S.; Kim, D. Synthesis 2004, 6, 847.