F
K. Mitsudo et al.
Letter
Synlett
J.; Zhao, J.; Sun, W.-Y.; Yu, J.-Q.; Lu, Y. Angew. Chem. Int. Ed.
2019, 58, 9099. (h) Jiang, Y.; Feng, Y.-y.; Zou, J.-x.; Lei, S.; Hu, X.-
l.; Yin, G.-f.; Tan, W.; Wang, Z. J. Org. Chem. 2019, 84, 10490.
(i) Gu, L.; Fang, X.; Weng, Z.; Song, Y.; Ma, W. Eur. J. Org. Chem.
2019, 1825. (j) Li, M.; Wang, J. Org. Lett. 2018, 20, 6490.
B.; Padmaja, A.; Reddy, M. M.; Reddy, P. V. R. Indian J. Chem.,
Sect. B: Org. Chem. Incl. Med. Chem. 1995, 34, 427. (d) Zweig, J. E.;
Newhouse, T. R. J. Am. Chem. Soc. 2017, 139, 10956.
(11) (a) Yoshida, J.; Saito, K.; Nokami, T.; Nagaki, A. Synlett 2011,
1189. (b) Suga, S.; Yamada, D.; Yoshida, J.-i. Chem. Lett. 2010, 39,
404. (c) Bard, A. J. Integrated Chemical Systems: A Chemical
Approach to Nanotechnology; Wiley: New York, 1994.
(12) Further details of the base optimizations, see SI, Table S6.
(13) 3-(4-Tolylsulfanyl)-1-benzothiophene (3a): One-Pot Synthe-
sis; Typical Procedure
(7) For electrochemical C–S coupling reactions, see: (a) Wang, P.;
Tang, S.; Huang, P.; Lei, A. Angew. Chem. Int. Ed. 2017, 56, 3009.
(b) Ogawa, K. A.; Boydston, A. J. Org. Lett. 2014, 16, 1928.
(c) Wang, P.; Tang, S.; Lei, A. Green Chem. 2017, 19, 2092. (d) Liu,
D.; Ma, H.-X.; Fang, P.; Mei, T.-S. Angew. Chem. Int. Ed. 2019, 58,
5033. (e) Liang, S.; Zeng, C.-C.; Tian, H.-Y.; Sun, B.-G.; Luo, X.-G.;
Ren, F. Adv. Synth. Catal. 2018, 360, 1444. (f) Folgueiras-Amador,
A. A.; Qian, X.-Y.; Xu, H.-C.; Wirth, T. Chem. Eur. J. 2018, 24, 487.
(g) Huang, C.; Qian, X.-Y.; Xu, H.-C. Angew. Chem. Int. Ed. 2019,
58, 6650. (h) Mitsudo, K.; Matsuo, R.; Yonezawa, T.; Inoue, H.;
Mandai, H.; Suga, S. Angew. Chem., Int. Ed. 2020, 59, 7803.
(8) For light-driven C–S coupling reactions, see: (a) Liu, B.; Lim, C.-
H.; Miyake, G. M. J. Am. Chem. Soc. 2017, 139, 13616. (b) Hong,
B.; Lee, J.; Lee, A. Tetrahedron Lett. 2017, 58, 2809. (c) Kibriya,
G.; Mondal, S.; Hajra, A. Org. Lett. 2018, 20, 7740. (d) Liu, B.; Lim,
C.-H.; Miyake, G. M. Synlett 2018, 29, 2449. (e) Li, G.; Yan, Q.;
Gan, Z.; Li, Q.; Dou, X.; Yang, D. Org. Lett. 2019, 21, 7938. (f) Li,
R.; Shi, T.; Chen, X.-L.; Lv, Q.-Y.; Zhang, Y.-L.; Peng, Y.-Y.; Qu, L.-
B.; Yu, B. New J. Chem. 2019, 43, 13642. (g) Blank, L.; Fagnoni,
M.; Protti, S.; Reuping, M. Synthesis 2019, 51, 1243. (h) Shieh, Y.-
C.; Du, K.; Basha, R. S.; Xue, Y.-J.; Shih, B.-H.; Li, L. J. Org. Chem.
2019, 84, 6223.
(9) (a) Ahmed, M.; Briggs, M. A.; Bromidge, S. M.; Buck, T.;
Campbell, L.; Deeks, N. J.; Garner, A.; Gordon, L.; Hamprecht, D.
W.; Holland, V.; Johnson, C. N.; Medhurst, A. D.; Mitchell, D. J.;
Moss, S. F.; Powles, J.; Seal, J. T.; Stean, T. O.; Stemp, G.;
Thompson, M.; Trail, B.; Upton, N.; Winborn, K.; Witty, D. R.
Bioorg. Med. Chem. Lett. 2005, 15, 4867. (b) Fernández-Salas, J.
A.; Pulis, A. P.; Procter, D. J. Chem. Commun. 2016, 52, 12364.
(c) Kawashima, H.; Yanagi, T.; Wu, C.-C.; Nogi, K.; Yorimitsu, H.
Org. Lett. 2017, 19, 4552.
TfOH (0.136 mL, 231 mg, 1.54 mmol) was added dropwise to a
solution of (phenylsulfanyl)acetic acid (1a; 33.6 mg, 0.20 mmol)
in anhyd DCE (0.3 mL), and the resulting mixture was stirred at
40 °C for 3 h then cooled to 0 °C. 4-Methylbenzenethiol (24.8
mg, 0.20 mmol) and 2,6-lutidine (0.18 mL, 1.5 mmol) were
added, and the mixture was stirred at 80 °C for 18 h then cooled
to r.t. The reaction was quenched with sat. aq NaHCO3 (3 mL),
and the mixture was extracted with CHCl3 (3 × 5 mL). The com-
bined organic phase was dried (MgSO4), filtered, and concen-
trated under reduced pressure. The residue was purified by
column chromatography (silica gel, hexane) to give a colorless
liquid; yield: 32.3 mg (0.13 mmol, 63%).
IR (neat): 3096, 3021, 1595, 1254, 1016 cm–1 1H NMR (400
.
MHz, CDCl3): = 2.28 (s, 3 H), 7.03 (d, J = 8.4 Hz, 2 H), 7.11 (d, J =
8.4 Hz, 2 H), 7.35–7.40 (m, 2 H), 7.62 (s, 1 H), 7.78–7.83 (m, 1 H),
7.86–7.90 (m, 1 H). 13C NMR (100 MHz, CDCl3): = 20.9, 122.9,
123.0, 124.7, 124.9, 125.0, 128.4, 129.8, 130.8, 132.5, 136.0,
138.8, 140.0.
(14) For details of the calculations, see SI.
(15) Li, X.; Ye, S.; He, C.; Yu, Z.-X. Eur. J. Org. Chem. 2008, 4296.
(16) (a) Saito, K.; Chikkade, P. K.; Kanai, M.; Kuninobu, Y. Chem. Eur. J.
2015, 21, 8365. (b) Kaida, H.; Satoh, T.; Hirano, K.; Miura, M.
Chem. Lett. 2015, 44, 1125. (c) Kurimoto, Y.; Mitsudo, K.;
Mandai, H.; Wakamiya, A.; Murata, Y.; Mori, H.; Nishihara, Y.;
Suga, S. Asian J. Org. Chem. 2018, 7, 1635. (d) Mitsudo, K.;
Kurimoto, Y.; Mandai, H.; Suga, S. Org. Lett. 2017, 19, 2821.
(17) The structure of 4o was confirmed by X-ray crystal structure
analysis. CCDC 1961314 contains the supplementary crystallo-
graphic data for compound 4o. The data can be obtained free of
charge from The Cambridge Crystallographic Data Centre via
(10) For representative examples, see: (a) Werner, L. H.; Schroeder,
D. C.; Ricca, S. Jr. J. Am. Chem. Soc. 1957, 79, 1675.
(b) Padmavathi, V.; Padmaja, A.; Reddy, D. B. Indian J. Chem.,
Sect. B: Org. Chem. Incl. Med. Chem. 1999, 38, 308. (c) Reddy, D.
(18) For details, see SI.
© 2020. Thieme. All rights reserved. Synlett 2020, 31, A–F