Crimmins,10 Heathcock,11 and the Ley12 laboratories. In
addition, several synthetic approaches to the spongistatins
have been disclosed.13
Scheme 1
However, even with these seminal synthetic achievements,
the scarcity of the spongistatins has prohibited further
biological testing. Indeed, a reisolation by the Pettit group
afforded only 35 mg of the natural product from 13 tons! of
wet sponge.14 Given the limited supply from nature, our
group initiated an ambitious program to develop a scalable
approach to (+)-spongistatin 1 (1), capable of delivering ca.
1 g, not only for further biological development but also as
an integral part of a program to design simpler congeners
possessing potent tumor cell growth inhibitory activity.
To this end, we recently reported an effective synthesis
of the EF fragment of (+)-spongistatin 1 (1) via (+)-7
(Scheme 2) exploiting the Petasis-Ferrier union/rearrange-
Scheme 2a
The spongistatins possess a striking array of structural
features, including a 42-membered macrolactone incorporat-
ing two spiroketals, in conjunction with a hemiketal, a fully
substituted tetrahydropyran unit, and a highly unsaturated
side chain. The relative and absolute stereochemistries, first
deduced by Kitagawa,3 were confirmed by the Evans total
synthesis of spongistatin 2 (2)6 and the Kishi total synthesis
of spongistatin 1 (1).7 More recently, successful total
syntheses have been also achieved by the Smith,8 Paterson,9
aIncluding reagent preparations.
ment,15 a synthetic tactic employed extensively in our
laboratories to access cis-2,6-disubstituted tetrahydropyrans.16
This approach successfully provided more than 700 mg of
the EF Wittig salt, which eventually led to 80 mg of
spongistatin 1 (from 450 mg of the EF Wittig salt).17 Shortly
thereafter, the MacMillan group reported an elegant two-
step synthesis of carbohydrates,18 combining a highly enan-
tioselective proline-catalyzed cross-aldol reaction of oxy-
(5) (a) Catassi, A.; Cesario, A.; Arzani, D.; Menichini, P.; Alama, A.;
Bruzzo, C.; Imperatori, A.; Rotolo, N.; Granone, P.; Russo, P. Cell. Mol.
Life Sci. 2006, 63, 2377. (b) Pettit, R.; Woyke, T.; Pon, S.; Cichacz, Z.;
Pettit, G.; Herald, C. Med. Mycol. 2005, 43, 453. (c) Pettit, R. K.; McAllister,
S. C.; Pettit, G. R.; Herald, C. L.; Johnson, J. M.; Cichacz, Z. A. Int. J.
Antimicrob. Agents 1998, 9, 147. (d) Bai, R.; Taylor, G. F.; Cichacz, Z. A.;
Herald, C. L.; Kepler, J. A.; Pettit, G. R.; Hamel, E. Biochemistry 1995,
34, 9714.
(6) (a) Evans, D. A.; Coleman, P. J.; Dias, L. C. Angew. Chem., Int.
Ed. Engl. 1997, 36, 2738. (b) Evans, D. A.; Trotter, B. W.; Coˆte´, B.;
Coleman, P. J. Angew. Chem., Int. Ed. Engl. 1997, 36, 2741. (c) Evans,
D. A.; Trotter, B. W.; Coˆte´, B.; Coleman, P. J.; Dias, L. C.; Tyler, A. N.
Angew. Chem., Int. Ed. Engl. 1997, 36, 2744. (d) Evans, D. A.; Trotter,
B. W.; Coleman, P. J.; Coˆte´, B.; Dias, L. C.; Rajapakse, H. A.; Tyler, A. N.
Tetrahedron 1999, 55, 8671.
(10) Crimmins, M. T.; Katz, J. D.; Washburn, D. G.; Allwein, S. P.;
McAtee, L. F. J. Am. Chem. Soc. 2002, 124, 5661.
(11) Heathcock, C. H.; McLaughlin, M.; Medina, J.; Hubbs, J. L.;
Wallace, G. A.; Scott, R.; Claffey, M. M.; Hayes, C. J.; Ott, G. R. J. Am.
Chem. Soc. 2003, 125, 12844.
(7) (a) Guo, J.; Duffy, K. J.; Stevens, K. L.; Dalko, P. I.; Roth, R. M.;
Hayward, M. M.; Kishi, Y. Angew. Chem., Int. Ed. 1998, 37, 187. (b)
Hayward, M. M.; Roth, R. M.; Duffy, K. J.; Dalko, P. I.; Stevens, K. L.;
Guo, J.; Kishi, Y. Angew. Chem., Int. Ed. 1998, 37, 192.
(12) Ball, M.; Gaunt, M. J.; Hook, D. F.; Jessiman, A. S.; Kawahara,
S.; Orsini, P.; Scolaro, A.; Talbot, A. C.; Tanner, H. R.; Yamanoi, S.; Ley,
S. V. Angew. Chem., Int. Ed. 2005, 44, 5433.
(8) (a) Smith, A. B., III; Doughty, V. A.; Lin, Q.; Zhuang, L.; McBriar,
M. D.; Boldi, A. M.; Moser, W. H.; Murase, N.; Nakayama, K.; Sobukawa,
M. Angew. Chem., Int. Ed. 2001, 40, 191. (b) Smith, A. B., III; Lin, Q.;
Doughty, V. A.; Zhuang, L.; McBriar, M. D.; Kerns, J. K.; Brook, C. S.;
Murase, N.; Nakayama, K. Angew. Chem., Int. Ed. 2001, 40, 196. (c) Smith,
A. B., III; Zhu, W.; Shirakami, S.; Sfouggatakis, C.; Doughty, V. A.;
Bennett, C. S.; Sakamoto, Y. Org. Lett. 2003, 5, 761. (d) Smith, A. B., III;
Doughty, V. A.; Sfouggatakis, C.; Bennett, C. S.; Koyanagi, J.; Takeuchi,
M. Org. Lett. 2002, 4, 783.
(13) (a) Ciblat, S.; Kim, J.; Stewart, C. A.; Wang, J.; Forgione, P.; Clyne,
D.; Paquette, L. A. Org. Lett. 2007, 9, 719. (b) Allais, F.; Cossy, J. Org.
Lett. 2006, 8, 3655. (c) Holson, E. B.; Roush, W. R. Org. Lett. 2002, 4,
3723. (d) Holson, E. B.; Roush, W. R. Org. Lett. 2002, 4, 3719. (e) Lemaire-
Audoire, S.; Vogel, P. J. Org. Chem. 2000, 65, 3346. (f) Zuev, D.; Paquette,
L. A. Org. Lett. 2000, 2, 679.
(14) Pettit, G. R. Arizona State University, personal communication.
(15) Smith, A. B., III; Sfouggatakis, C.; Gotchev, D. B.; Shirakami, S.;
Zhu, W.; Doughty, V. A. Org. Lett. 2004, 6, 3637.
(9) Paterson, I.; Chen, D. Y.-K.; Coster, M. J.; Acena˜, J. L.; Bach, J.;
Gibson, K. R.; Keown, L. E.; Oballa, R. M.; Trieselmann, T.; Wallace,
D. J.; Hodgson, A. P.; Norcross, R. D. Angew. Chem., Int. Ed. 2001, 40,
4055.
(16) Smith, A. B., III; Fox, R. J.; Razler, T. M. Acc. Chem. Res. 2008,
41, 675.
(17) Sfouggatakis, C. PhD Thesis, University of Pennsylvania, 2004.
(18) Northrup, A. B.; MacMillan, D. W. C. Science 2004, 305, 1753.
4360
Org. Lett., Vol. 10, No. 19, 2008