pubs.acs.org/joc
bisoxazolines,3 bisoxazolidines,4 boron-bridged bisoxazo-
Enantioselective Henry Reaction Catalyzed by CuII
Salt and Bipiperidine
lines,5 C2-symmetric diamines,6 pyridine derivatives,7 chiral
Schiff bases,8 sparteine,9 sulfonyldiamine,10 and hetero-
organic ligands11 catalyze an asymmetric nitroaldol
(Henry) reaction.12 It is very difficult to find a common
feature for the above-mentioned nitrogen-containing com-
pounds. Thus, several very different diamines have been
tested for the asymmetric induction ability.
Artur Noole, Kristin Lippur, Andrus Metsala,
~
Margus Lopp, and Tonis Kanger*
Department of Chemistry, Tallinn University of Technology,
Akadeemia tee 15, 12618 Tallinn, Estonia
We have investigated four types of enantiomeric ligands
(compounds 1-4) for the copper-catalyzed asymmetric
Henry reaction (Figure 1).
Of these compounds, bimorpholines (1 and 2) and bipi-
peridines 4 are already known as efficient organocatalysts in
aldol and Michael reactions, respectively.13
Received December 16, 2009
All these ligands are constructed similarly, by linking
two heterocyclic rings, but they differ from each other
in the number of coordinative sites in the molecule and
the flexibility of the structure. Flexible C2-symmetric
(2S,20S)-2,20-bimorpholines 1 and (3S,30S)-3,30-bimor-
pholines 2 bear four donor atoms, but the electron-donat-
ing ability of the nitrogen atom is reduced by the close
location of the electronegative oxygen atoms. A different
position of the bridging bond between two heterocycles
changes the accessibility of donor atoms by the metal. The
replacement of oxygen atoms in rings by methylene groups
leads to bipiperidine derivatives 4 which can be prepared
much more easily than the corresponding morpholines.
Racemic bipiperidine 4a is straightforwardly derived from
the commercially available dipyridyl in one chemical
step.14 Piperidinylpyridine 3 and bipiperidine 4 deriva-
tives differ from the bimorpholines in terms of a reduced
number of coordinative sites in the molecule. In addition,
the nitrogen atoms in piperidinylpyridine 3 are chemically
different, and furthermore, the two rings are structurally
totally different: one is a flat aromatic pyridine ring and
the other a flexible saturated piperidine ring. The steric
hindrance surrounding the electron-donating center in all
ligands can be easily modified by changing substituents
R1-R4.
A complex derived from the enantiomeric bipiperidine
and copper(II) acetate hydrate is an efficient catalyst for
the enantioselective Henry reaction. The easy availability
of both catalyst components, mild reaction conditions,
high yield, and good to excellent enantioselectivity make
the catalyst useful for everyday practice.
TheHenry (nitro-aldol) reaction is a well-knowntoolfor the
building of a C-C bond.1 Since the pioneering work of
Shibasaki,2 where the heterobimetallic catalyst was used,
various versions of metal-catalyzed asymmetric Henry reac-
tions have been described. Copper has a special place among
the metals used as catalysts because it is a cheap, low toxicity
metal and has been widely used in organic synthesis. The
excellent chelating properties of that metal allow coordi-
nation of it with bidentate as well as with polydentate ligands.
Copper complexes with various ligands, which include
ꢀ
(7) (a) Blay, G.; Hernandez-Olmos, V.; Pedro, J. R. Chem. Commun.
ꢀ
ꢀ
2008, 4840–4842. (b) Blay, G.; Climent, E.; Fernandez, I.; Hernandez-Olmos,
V.; Pedro, J. R. Tetrahedron: Asymmetry 2007, 18, 1603–1612. (c) Arai, T.;
Suzuki, K. Synlett 2009, 3167–3170.
(8) (a) Lai, G.; Wang, S.; Wang, Z. Tetrahedron: Asymmetry 2008, 19,
1813–1819. (b) Colak, M.; Demirel, N. Tetrahedron: Asymmetry 2008, 19,
635–639.
(9) Maheswaran, H.; Prasanth, K. L.; Krishna, G. G.; Ravikumar, K.;
Sridharb, B.; Kantam, M. L. Chem. Commun. 2006, 4066–4068.
(10) Arai, T.; Takashita, R.; Endo, Y.; Watanabe, M.; Yanagisawa, A.
J. Org. Chem. 2008, 73, 4903–4906.
(1) Rosini, G. In Comprehensive Organic Synthesis; Trost, B. M., Flem-
ing, I., Eds.; Pergamon: Oxford, UK, 1999; Vol. 2, pp 321-340.
(2) Sasai, H.; Suzuki, T.; Arai, S.; Arai, T.; Shibasaki, M. J. Am. Chem.
Soc. 1992, 114, 4418–4420.
(3) (a) Ginotra, S. K; Sing, V. K. Org. Biomol. Chem. 2007, 5, 3932–3937.
(b) Lu, S.-F.; Du, D.-M.; Zhang, S.-W.; Xu, J. Tetrahedron: Asymmetry
2004, 15, 3433–3441. (c) Risgaard, T.; Gothelf, K. V.; Jorgensen, K. A. Org.
Biomol. Chem. 2003, 1, 153–156. (d) Evans, D. A.; Seidel, D.; Rueping, M.;
Lam, H. W.; Shaw, J. D.; Downey, C. W. J. Am. Chem. Soc. 2003, 125,
12692–12693. (e) Christensen, C.; Juhl, K.; Hazell, R. G.; Jorgensen, K. A.
J. Org. Chem. 2002, 67, 4875–4881.
ꢀ
ꢀ
(11) Rachwalski, M.; Lesniak, S.; Sznajder, E.; Kiezbasinski, P. Tetra-
hedron: Asymmetry 2009, 20, 1547–1549.
(12) Recent reviews: (a) Palomo, C.; Oiarbide, M.; Laso, A. Eur. J. Org.
Chem. 2007, 13, 2561–2574. (b) Boruwa, J.; Gogoi, N.; Saikia, P. P.; Barua,
N. C. Tetrahedron: Asymmetry 2006, 17, 3315–3326.
€€
(13) (a) Kanger, T.; Kriis, K.; Laars, M.; Kailas, T.; Muurisepp, A.-M.;
(4) (a) Liu, S.; Wolf, C. Org. Lett. 2008, 10, 1831–1834. (b) Spangler,
K. Y.; Wolf, C. Org. Lett. 2009, 11, 4724–4727.
ꢀ
Pehk, T.; Lopp, M. J. Org. Chem. 2007, 72, 5168–5173. (b) Mosse, S.; Laars,
(5) Toussaint, A.; Pfaltz, A. Eur. J. Org. Chem. 2008, 14, 4591–4597.
(6) (a) Selvakumar, S.; Sivasankaran, D.; Singh, V. K. Org. Biomol.
Chem. 2009, 7, 3156–3162. (b) Kowalczyk, R.; Sidorowicz, L.; Skarzewski,
J. Tetrahedron: Asymmetry 2008, 19, 2310–2315. (c) Qin, B.; Xiao, X.; Liu,
X.; Huang, J.; Wen, Y.; Feng, X. J. Org. Chem. 2007, 72, 9323–9328.
M.; Kriis, K.; Kanger, T.; Alexakis, A. Org. Lett. 2006, 8, 2559–2562.
(c) Laars, M.; Ausmees, K.; Uudsemaa, M.; Tamm, T.; Kanger, T.; Lopp, M.
J. Org. Chem. 2009, 74, 3772–3775.
€€
(14) Laars, M.; Kriis, K.; Kailas, T.; Muurisepp, A.-M.; Pehk, T.;
Kanger, T.; Lopp, M. Tetrahedron: Asymmetry 2008, 19, 641–645.
DOI: 10.1021/jo902664v
r
Published on Web 01/22/2010
J. Org. Chem. 2010, 75, 1313–1316 1313
2010 American Chemical Society