Letter
Journal of Medicinal Chemistry, 2009, Vol. 52, No. 24 7945
Table 4. Trifluorethyl Substituted Pyrazolopyrimidine Analogues
(2) Nuss, J. M.; Tsuhako, A. L.; Anand, N. K. Emerging Therapies
Based on Inhibitors of Phosphatidyl-Inositol-3-Kinases. Annu.
Rep. Med. Chem. 2009, 44, 339–356.
(3) Feldman, M. E.; Apsel, B.; Uotila, A.; Loewith, R.; Knight, Z. A.;
Ruggero, D.; Shokat, K. M. Active-Site Inhibitors of mTOR
Target Rapamycin-Resistant Outputs of mTORC1 and mTORC2.
PLoS Biol. 2009, 7 (2), No. e1000038; DOI: 10.1371/journal.
pbio.1000038.
(4) Thoreen, C. C.; Kang, S. A.; Chang, J. W.; Liu, Q.; Zhang, J.; Gao,
Y.; Reichling, L. J.; Sim, T.; Sabatini, D. M.; Gray, N. S. An ATP-
Competitive Mammalian Target of Rapamycin Inhibitor Reveals
Rapamycin-Resistant Functions of mTORC1. J. Biol. Chem. 2009,
284 (12), 8023–8032.
(5) Garcıa-Martınez, J. M.; Moran, J.; Clarke, R. G.; Gray, A.;
´ ´
Cosulich, S. C.; Chresta, C. M.; Alessi, D. R. Ku-0063794 Is a
Specific Inhibitor of the Mammalian Target of Rapamycin
(mTOR). Biochem. J. 2009, 421, 29–42.
(6) Yu, K.; Toral-Barza, L.; Shi, C.; Zhang, W.-G.; Lucas, J.; Shor, B.;
Kim, J.; Verheijen, J.; Curran, K.; Malwitz, D. J.; Cole, D. C.;
Ellingboe, J.; Ayral-Kaloustian, S.; Mansour, T. S.; Gibbons, J. J.;
Abraham, R. T.; Nowak, P.; Zask, A. Biochemical, Cellular and in
Vivo Activity of Novel ATP-Competitive and Selective Inhibitors
of the Mammalian Target of Rapamycin. Cancer Res. 2009, 69,
6232–6240.
(7) Zask, A; Verheijen, J. C.; Curran, K.; Kaplan, J.; Richard, D. J.;
Nowak, P.; Malwitz, D. J.; Brooijmans, N.; Bard, J.; Svenson,
K.; Lucas, J.; Toral-Barza, L.; Zhang, W.-G.; Hollander, I.;
Gibbons, J. J.; Abraham, R. T.; Ayral-Kaloustian, S.; Mansour,
T. S.; Yu, K. ATP-Competitive Inhibitors of the Mammalian
Target of Rapamycin: Design and Synthesis of Highly Potent
and Selective Pyrazolopyrimidines. J. Med. Chem. 2009, 52,
5013–5016.
(8) Verheijen, J.; Richard, D.; Curran, K.; Kaplan, J.; Lefever, M.;
Nowak, P.; Malwitz, D.; Brooijmans, N.; Toral-Barza, L.; Zhang,
W.-G.; Lucas, J.; Hollander, I.; Ayral-Kaloustian, S.; Mansour, T.;
Yu, K.; Zask, A. Discovery of 4-Morpholino-6-aryl-1H-pyrazolo-
[3,4-d]pyrimidines as Highly Potent and Selective, ATP-Competi-
tive Inhibitors of the mammalian Target of Rapamycin (mTOR):
Optimization of the 6-Aryl Substituent. J. Med. Chem., DOI:
10.1021/jm9013828.
(9) Malagu, K.; Duggan, H.; Menear, K.; Hummersone, M.; Gomez,
S.; Bailey, C.; Edwards, P.; Drzewiecke, J.; Leroux, F.; Quesada,
M. J.; Hermann, G.; Maine, S.; Molyneaux, C.-A.; Le Gall, A.;
Pullen, J.; Hickson, I.; Smith, L.; Maguire, S.; Martin, N.;
Smith, G.; Pass, M. The Discovery and Optimization of Pyrido-
[2,3-d]pyrimidine-2,4-diamines as Potent and Selective Inhibitors
of mTOR Kinase. Bioorg. Med. Chem. Lett. 2009, 19, 5950–
5953.
a Average IC50 ( SEM (nM).
In summary, morpholine derivatives can profoundly
influence the mTOR and PI3K binding affinity of
pyrazolopyrimidine analogues containing them, resulting in
potent subnanomolar mTOR inhibitors with unprecedented
selectivity for mTOR (>20000-fold). Molecular modeling
suggests that increased mTOR selectivity in bridged morpho-
line containing inhibitors is caused by a leucine for phenylala-
nine substitution in mTOR versus PI3K that creates a deeper
pocket that can better accommodate bridged morpholines.
Chiral morpholine derivatives gave inhibitors whose enantio-
mers had differential binding affinity for mTOR and PI3K
resulting in different selectivity and potency profiles. Inclusion
of morpholine derivatives in pyrazolopyrimidines and other
scaffolds to produce mTOR selective analogues with potent in
vivo anticancer efficacy will be reported in due course.
(10) Amino acid residues are numbered according to their positions in
PI3Kγ. Val882 in PI3Kγ is Val2240 in mTOR.
(11) Walker, E. H.; Pacold, M. E.; Perisic, O.; Stephens, L.; Hawkins,
P. T.; Wymann, M. P.; Williams, R. L. Structural Determinants of
Phosphoinositide 3-Kinase Inhibition by Wortmannin, LY294002,
Quercetin, Myricetin, and Staurosporine. Mol. Cell 2000, 6, 909–
919.
(12) Knight, Z. A.; Gonzalez, B.; Feldman, M. E.; Zunder, E. R.;
Goldenberg, D. D.; Williams, O.; Loewith, R.; Stokoe, D.;
Balla, A.; Toth, B.; Balla, T.; Weiss, W. A.; Williams, R. L.;
Shokat, K. M. A Pharmacological Map of the PI3-K Family
Defines a Role for p110R in Insulin Signaling. Cell 2006, 125,
733–747.
(13) Richard, D. J.; Verheijen, J. C.; Curran, K.; Kaplan, J.; Brooijmans,
N.;Toral-Barza, L.;Hollander, I.;Yu, K.; Zask, A. Incorporationof
Water-Solubilizing Groups in Pyrazolopyrimidine mTOR Inhibi-
tors; Discovery of Highly Potent and Selective Analogs with Im-
proved Human Microsomal Stability. Bioorg. Med. Chem. Lett.
2009, 19, 6830-6835.
(14) Yu, K.; Shi, C.; Toral-Barza, L.; Lucas, J.; Shor, B.; Kim, J. E.;
Zhang, W.-G.; Mahoney, R.; Gaydos, C.; Tardio, L.; Kim, K.;
Curran, K.; Ayral-Kaloustian, S.; Mansour, T. S.; Abraham, R. T.;
Zask, A.; Gibbons, J. J. Beyond Rapalog Therapy: Preclinical
Pharmacology and Antitumor Activity of WYE-125132, an ATP-
Competitive and Specific Inhibitor of mTORC1 and mTORC2.
Cancer Res. In Press.
Acknowledgment. The authors thank Drs. Tarek Mansour,
Robert Abraham, and James Gibbons for program support
and contributions.
Supporting Information Available: Experimental, biological,
and molecular modeling methods. This material is available free
References
(1) Verheijen, J.; Yu, K.; Zask, A. mTOR Inhibitors in Oncology.
Annu. Rep. Med. Chem. 2008, 43, 189–199.