Full Paper
doi.org/10.1002/ejoc.202000336
EurJOC
European Journal of Organic Chemistry
Supporting Information (see footnote on the first page of this
article): For full experimental details available.
that lead to a challenging C-C bond-forming event, with the
efficient generation of a reasonable concentration of Rh-aryl
species being critical to the success of the reaction. If C-C bond
formation is slow, more significant amounts of proto-deboron-
ation can occur when using challenging Michael acceptors. It
is hoped this new catalyst, or as yet undiscovered phosphine-
phosphite derived catalysts could be used in the future to ex-
tend the scope of Rh catalyzed conjugate additions.
Acknowledgments
We would like to thank the University of St Andrews, and the
EPSRC Centre for Doctoral Training in Critical Resource Catalysis
(CRITICAT) for financial support [Ph.D. studentship to SG;
Grant code: EP/L016419/1], and the EPSRC for funding of JAF
(EP/M003868/1).
Experimental Section
Keywords: Asymmetric arylation · Michael addition · Aryl
boronic acids · Phospholane ligands · Asymmetric catalysis
General: Commercially available starting materials were purchased
from Sigma Aldrich, Alfa Aesar, Acros, STREM or Apollo Scientific
and were used without further purification. (R,R,R)-BOBPHOS,[11b]
(S)-Kelliphite,[13] benzyl 4-oxo-3,4-dihydropyridine-1(2H)-carboxyl-
ate[9,21] were synthesized in house according to published proce-
dures.
[1] a) H. J. Edwards, J. D. Hargrave, S. D. Penrose, C. G. Frost, Chem. Soc. Rev.
2010, 39, 2093–2105; b) P. Tian, H.-Q. Dong, G.-Q. Lin, ACS Catal. 2012,
2, 95–119; c) Pd catalysed conjugate additions enables some challenging
alkenes to be used, see A. Gutnov, Eur. J. Org. Chem. 2008, 4547–4554.
[2] a) Y. Takaya, M. Ogasawara, T. Hayashi, M. Sakai, N. Miyaura, J. Am. Chem.
Soc. 1998, 120, 5579–5580; b) Y. Takaya, T. Senda, H. Kurushima, M. Oga-
sawara, T. Hayashi, Tetrahedron: Asymmetry 1999, 10, 4047–4056; c) S.
Sakuma, M. Sakai, R. Itooka, N. Miyaura, J. Org. Chem. 2000, 65, 5951–
5955; d) S. Sakuma, N. Miyaura, J. Org. Chem. 2001, 66, 8944–8946; e) T.
Nishimura, T. Katoh, T. Hayashi, Angew. Chem. Int. Ed. 2007, 46, 4937–
4939; Angew. Chem. 2007, 119, 5025; f) T. Hayashi, M. Takahashi, Y. Tak-
aya, M. Ogasawara, J. Am. Chem. Soc. 2002, 124, 5052–5058; g) K. Lukin,
Q. Zhang, M. R. Leanna, J. Org. Chem. 2009, 74, 929–931; h) E. M. Sim-
mons, B. Mudryk, A. G. Lee, Y. Qiu, T. M. Razler, Y. Hsiao, Org. Process Res.
Dev. 2017, 21, 1659–1667; i) S. Brock, D. R. J. Hose, J. D. Moseley, A. J.
Parker, I. Patel, A. J. Williams, Org. Process Res. Dev. 2008, 12, 496–502.
[3] a) T. Korenaga, K. Osaki, R. Maenishi, T. Sakai, Org. Lett. 2009, 11, 2325–
2328; b) T. Korenaga, R. Maenishi, K. Osaki, T. Sakai, Heterocycles 2010,
80, 157–162; c) T. Korenaga, R. Sasaki, T. Takemoto, T. Yasuda, M. Wata-
nabe, Adv. Synth. Catal. 2018, 360, 322–333.
[4] For phosphine-phosphites in copper catalysed Michael additions, see: a)
T. Robert, J. Velder, H.-G. Schmalz, Angew. Chem. Int. Ed. 2008, 47, 7718–
7721; Angew. Chem. 2008, 120, 7832; b) A. Falk, A.-L. Göderz, H.-G.
Schmalz, Angew. Chem. Int. Ed. 2013, 52, 1576–1580; Angew. Chem. 2013,
125, 1617.
[5] a) R. Shintani, W.-L. Duan, T. Nagano, A. Okada, T. Hayashi, Angew. Chem.
Int. Ed. 2005, 44, 4611–4614; Angew. Chem. 2005, 117, 4687; b) W.-L.
Duan, H. Iwamura, R. Shintani, T. Hayashi, J. Am. Chem. Soc. 2007, 129,
2130–2138; c) E. Piras, F. Lang, H. Ruegger, D. Stein, M. Worle, H. Grützma-
cher, Chem. Eur. J. 2006, 12, 5849–5858.
[6] a) Q. Chen, T. Soeta, M. Kuriyama, K. I. Yamada, K. Tomioka, Adv. Synth.
Catal. 2006, 348, 2604–2608.
[7] a) F. Lang, D. Li, J.-M. Chen, J. Chen, L.-C. Li, L.-F. Cun, J. Zhu, J.-G. Deng,
J. Liao, Adv. Synth. Catal. 2010, 352, 843–846.
[8] J.-M. Becht, E. Bappert, G. Helmchen, Adv. Synth. Catal. 2005, 347, 1495–
1498.
[9] S. H. Gilbert, V. Viseur, M. L. Clarke, Chem. Commun. 2019, 55, 6409–
6412.
[10] a) G. Chen, N. Tokunaga, T. Hayashi, Org. Lett. 2005, 7, 2285–2288; b) T.
Korenaga, K. Hayashi, Y. Akaki, R. Maenishi, T. Sakai, Org. Lett. 2011, 13,
2022–2025.
[11] a) G. M. Noonan, J. A. Fuentes, C. J. Cobley, M. L. Clarke, Angew. Chem.
Int. Ed. 2012, 51, 2477–2480; Angew. Chem. 2012, 124, 2527; b) P. Ding-
wall, J. A. Fuentes, L. Crawford, A. M. Z. Slawin, M. Bühl, M. L. Clarke, J.
All catalytic reactions and all air sensitive procedures were carried
out under inert conditions or under hydrogen pressure using stan-
dard Schlenk techniques. All solvents used for these systems were
dry and degassed; taken from solvent purification systems, or com-
mercially supplied anhydrous bottles. Removal of solvent was as-
sisted by a rotary evaporator. Analytical thin layer chromatography
(TLC) was performed on pre-coated alumina plates (Kieselgel 60
F254 silica), before analyzing under ultraviolet light (254 nm). All
SiO2 column chromatography was performed with Kieselgel 60
silica. The research data underpinning this publication can be
c3558bbcae8a[22]
Synthesis of 6a: The pre-dried vial was filled with 4-fluorophenyl-
boronic acid (73.5 mg, 0.525 mmol), [Rh(NBD)2]BF4 (1.1 mg, 0.6 mol-
%), (R,R,R)-BOBPHOS (2.1 mg, 0.64 mol-%), a magnetic stirrer bar,
and sealed with crimped caps. The reaction vessel was purged with
N2 3 times, before the addition of the dioxane (0.5 mL) via syringe.
The reaction mixture was stirred for 2 hours before the addition of
H2O (0.15 mL), Et3N (70 μL, 0.5 mmol) and a stock solution of
benzyl 4-oxo-3,4-dihydropyridine-1(2H)-carboxylate in dioxane (1 M,
0.5 mmol, 0.5 mL). The reaction was then left to stir at room temper-
ature for 16 hours. The reaction mixture was dissolved in a hept-
ane:methyl tert-butyl ether (10:3, 8 mL) and washed with water (2 ×
5 mL). The combined aqueous layers were then extracted with fur-
ther heptane: methyl tert-butyl ether (2:1, 5 mL). The combined
organic layers were dried (MgSO4) and solvent was removed in
vacuo. Purification was carried out by column chromatography
(SiO2 9:1, hexane/ethyl acetate) to yield a yellow oil as the isolated
product (125 mg, 76 %, 90 % ee). Enantiomeric excess was deter-
1
mined by HPLC. H NMR (500 MHz, CDCl3) δ = 7.41–7.36 (m, 5H, 9-
3
3
H, 10-H, 11-H), 7.25–7.21 (m, 2H, 13-H), 7.03 (“t”, JHH = JHF = 8.7,
2H, 14-H), 5.84 (br s, 1H, 5-H), 5.28–5.20 (m, 2H, 7-H), 4.36–4.27 (m,
3
1H, 1-H), 3.18 (t, JHH = 12.0, 1H, 1-H), 2.97 (dd, JHH = 15.4, 2.1, 1H,
4-H), 2.89 (dd, JHH = 15.4, 6.9, 1H, 4-H), 2.60–2.53 (m, 1H, 2-H), 2.39
(d, JHH = 15.4, 1H, 2-H) ppm. 13C{1H} NMR (126 MHz, CDCl3) δ =
207.2 (s, 3-C), 162.2 (d, 1JCF = 247.6 Hz 15-C), 155.4 (s, 6-C), 136.1 (s,
3
8-C), 135.5 (s, 12-C), 128.6 (s, Ar-CH), 128.5 (d, JCF = 5.1 Hz 13-C),
15921–15932; (S,S,S)-BOBPHOS is available
2
Am. Chem. Soc. 2017, 139,
128.4 (s, Ar-CH), 128.1 (s, Ar-CH), 115.7 (d, JCF = 21.5 Hz 14-C), 67.9
from Strem chemicals.
(s, 7-C), 54.1 (s, 5-C), 44.3 (s, 4-C), 40.6 (s, 2-C), 38.9 (s, 1-C) ppm.
19F{1H} NMR (376 MHz, CDCl3) δ = –114.4 (s, 15-F) ppm. HRMS (ES+)
m/z: 350.1155 [M + Na]+, [C19H18O3NF + Na] requires 350.1163.
HPLC (Chiralpack OD-H, hexane/2-propanol 80:20, 0.5 mL/min, RT):
tR = 35.5 min (S), 43.3 min (R). Optical rotation: [α]D20 = –70.3 (c =
1.0, CHCl3).
[12] A. T. Axtell, C. J. Cobley, J. Klosin, G. T. Whiteker, A. Zanotti-Gerosa, K. A.
Abboud, Angew. Chem. Int. Ed. 2005, 44, 5834; Angew. Chem. 2005, 117,
5984.
[13] C. J. Cobley, K. Gardner, J. Klosin, C. Praquin, C. Hill, G. T. Whiteker, A.
Zanotti-Gerosa, J. L. Petersen, K. A. Abboud, J. Org. Chem. 2004, 69,
4031–4040.
Eur. J. Org. Chem. 0000, 0–0
5
© 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim